

 Investigating Error Injection to Enhance the Effectiveness
of Mobile Text Entry Studies of Error Behaviour

1st Author Name
 Affiliation

Address
e-mail address

Optional phone number

2nd Author Name
Affiliation
Address

e-mail address
Optional phone number

3rd Author Name
Affiliation
Address

e-mail address
Optional phone number

ABSTRACT
During lab studies of text entry methods it is typical to
observer very few errors in participants’ typing – users
tend to type very carefully in labs. This is a problem when
investigating methods to support error awareness or
correction as support mechanisms are not tested. We
designed a novel evaluation method based around
injection of errors into the user’s typing stream and report
two user studies on the effectiveness of this technique.
Injection allowed us to observe a larger number of
instances and more diverse types of error correction
behaviour than would normally be possible in a single
study, without having a significant impact on key input
behaviour characteristics. Qualitative feedback from both
studies suggests that our injection algorithm was
successful in creating errors that appeared realistic to
participants. The use of error injection shows promise for
the investigation of error correction behaviour in text
entry studies.

Author Keywords
Text entry; Evaluation Methods;

ACM Classification Keywords
H.5.2 User Interfaces: Evaluation/methodology.

INTRODUCTION
Text entry is still core to much interaction with most
computing devices including desktops, laptops, tablets,
smartphones and increasingly smart TVs. There is a long
and still very active history of research on developing
new text entry methods for mobile phones, tablets, tables,
watches and other platforms (e.g. [13][10][15]). Much of
text entry research is based around comparing mobile text
entry solutions through formal user-based evaluation (e.g.
[13][20][22]). The evaluation of text entry approaches is
key to moving the field forward, for example to achieve
the challenge of inviscid text entry [9]. However,
laboratory studies tend to result in very low error rates as
users focus carefully on their typing. "In-the-wild" studies

of users using their devices in their normal lives give the
most realistic insight into mobile usage (e.g. [5]). For text
entry studies in-the-wild studies can reveal behaviour of
use patterns and has shown to be usable for improving
text entry performance (e.g. [2]). However, in-the-wild
studies are less controlled and replicable than lab based
studies, are more time consuming to run, harder to recruit
for as the impact is higher on participants and more
complex for practitioners to adopt as keyboards have to
be “production quality” to support usage outside the lab.
Finally, there can be complex ethical, security and data-
protection issues in logging the day-to-day text entry data
that gives the truest insight into typing behaviour.

Error correction has been shown to be particularly
important on touch screens with small keys (e.g. [11]) and
was seen as one of the challenges for intelligent text entry
[8]. Support for error awareness and correction have also
been identified as a strongly desired features in studies on
older adult smartphone usage [6]. Furthermore, auto-
corrections errors, when current correction mechanisms
fail, are widely discussed in the press as a problem of
modern mobile text entry (e.g. [16]).

In this paper we present our findings of studying a novel
evaluation method using both a baseline and an enhanced
keyboard design, and reflect on the ability of the different
study techniques to provide insights on users’ text entry
correction behaviour. We present a novel laboratory study
technique using random-but-realistic automatic injection
of errors into users’ typing as they type and not on how
our keyboard performed compared to a baseline keyboard.
The paper first presents the background to text entry
studies. We then give an overview of the case-study
keyboard that is designed to support error awareness.
Structured around the reporting of two user studies, the
bulk of the paper focuses on our investigations into typing
with injected errors using two approaches. We conclude
with recommendations on using the technique to augment
traditional laboratory text entry studies to gain more
insight into user behaviour in error-prone situations.

BACKGROUND: TEXT ENTRY EVALUATION
The text entry community has widely adopted a standard
approach to studies that involves users being asked to
copy or transcribe a set of fixed phrases. The time that
users take and number of errors they make are used as

© 2015 Authors – Confidential NordiCHI submission

metrics to compare text entry within a study. To allow
comparison between studies, standard phrase sets are now
widely used. The two most widespread are the
MacKenzie and Soukoreff’s original 500 short-phrases set
[14] (e.g. Have a good weekend) and the Enron Mobile
collection [21] of phrases that were written on mobiles
(e.g. Can you help me here?). There are various other
specific collections such as an SMS corpus [1] and a child
oriented corpus [3]. Paek and Hsu argue for the use of
transcription tasks by stating that “It is difficult, for
example, to claim that one input technique performed
better than another if participants using one or the other
technique just happened to produce longer, more
complicated phrases” [17]. While the approach of fixed
phrase copying gives strong internal consistency,
reproducibility and study homogeneity advantages, the
scenario of copying phrases is clearly not representative
of most mobile text entry. Furthermore, a counter
argument to [17] is that longer, more complicated user
input with a particular keyboard may be indicative of that
keyboard better supporting that user’s natural typing style
than, say, a simpler keyboard. As such there has been
some investigation into complementing transcription tasks
with more free-form entry.

An alternative to copy tasks is to ask users to generate
text in composition tasks. Karat et al. [4] compared
copying sections of a novel with composing replies to
scenarios and found composition speed was 58% of that
for coping. Vertanen and Kristensson [22] investigated
complementing copy tasks with composition tasks by
asking users to (a) reply to a message, (b) compose a
message without scenario prompting and (c) compose
with scenario prompting. They showed that composition
tasks had an entry rate of 65-85% of the copy tasks
depending on task type and that typed responses varied in
length between 55% and 135% of copy tasks. They
concluded that “providing participants with a simple
instruction of creating a short message in the domain of
interest was successful in getting participants to quickly
invent and compose text. It does not appear necessary to
provide participants with a specific situation or message
in order to help them invent a message.” Thus it seems
that the use of composition in text entry evaluation has
potential for further exploration but that it is difficult to
generate longer messages than copy tasks.

The focus on much text entry evaluation is on speed of
entry, usually measured in words-per-minute (WPM)
following touch-typing tradition. However, accuracy is
also important. In experimental conditions users are
normally asked to type “quickly but accurately” and this
typically results in low error rates in final submissions.
Despite the typically low in-lab error rates, it is still
prudent to check the correctness of final user input during
studies in case a particular keyboard is error-prone and to
reduce the opportunity for participants to “game” the
study tasks. For copy tasks, edit distance can be used a

measure of accuracy of the final phrase [19][12] or a
unified measure for combining errors in the final phase
with corrected errors as typing proceeds [20]. For
composition tasks correctness can be inspected manually
(either by the researchers or crowd sourcing [22]), by
simply counting out-of-dictionary word rates or by
monitoring the input stream for text corrections [23].
Given the limitations of transcription tasks and our
experience of transcriptions tasks still leading to very few
typing errors we wanted to explore alternatives that focus
on error awareness.

TOUCHSCREEN DESIGN FOR ERROR CORRECTION
In order to conduct comparative text entry studies we
investigated the techniques using a case study based
around a keyboard that was initially designed to support
older adults [7], but which has error support and
awareness features that have a wider potential audience.
Our experience in lab studies using older and younger
participants alike, have often shown very low error rates –
thus few opportunities to explore behaviour on error
detection and correction strategies in mobile text entry, or
usage of error support features. Hence the main
motivation behind our error injection technique, which
was aimed to bring out more of this type of participant
behaviour than is normally achievable during copy tasks.
Before discussing the injected error technique, we will
describe the keyboard whose novel error support
mechanisms we aimed to evaluate.

Study keyboard: The Highlighting Keyboard
We investigated usage of an Android keyboard developed
to increase awareness of text entry errors [7]. The
keyboard has a standard QWERTY soft keyboard layout
with word suggestions that is augmented with two
primary features to support error correction (see Figure 1
left): a colour bar for feedback on accuracy after typing a
word, and highlighting of words within the main
composition area (outside the traditional keyboard
interaction area). The word highlighting was designed to

Figure 1: Overview of the Highlighting Keyboard (left) and

Normal Keyboard (right)

emphasize errors and to support post-typing review of
entered text while the coloured feedback bar was designed
to give more transient feedback during typing itself and
near the input focus. When finished typing a word, the
keyboard automatically checks the spelling of the last
word and gives the following feedback:

• Red highlight and red bar when a word is
incorrectly spelled and the system is not confident
of offering a good correction (a serious mistake);

• Orange highlight and orange bar when a word is a
slight mistake and has been autocorrected as the
spell checker has high confidence, or yellow
highlighting if autocorrect is disabled (a minor
mistake);

• No highlighting and green bar for a known word.

The highlighting remains visible throughout the text entry
sessions in order to support post-typing review. When
reviewing text, tapping on a red highlight shows
suggested spell corrections in the suggestion bar of the
keyboard, while tapping on an orange word shows the
original typed word and alternative suggestions. Auto-
completions, corrections and next word suggestions are
shown on a suggestion bar as standard in many soft-
keyboards.

The keyboard’s error-support features supplemented those
already available on Android and were individually
controllable through settings, allowing us to compare
Highlighting and Normal study conditions (Figure 1). The
Normal keyboard (Figure 1 right) is a simple QWERTY
keyboard with a word suggestion bar; the Highlighting
keyboard (Figure 1 left) also included the error feedback
colour bar and highlighting features. Using these
keyboard conditions, this paper reports on two studies
into text entry behaviour, describing the evolution of our
injected error algorithm.

STUDY DESIGN AND REPORTING
In order to assess error support features of the keyboard
and to get feedback from participants on its design, we
ran studies with participants performing text entry tasks
on the two variants of the keyboard by changing only the
settings options (Figure 1 left vs right). A balanced
experimental design was followed to investigate the two
variants: character-by-character injection and post word
completion injection (studies 1 and 2). Each study was a
2x2 within-subject design comparing the normal and
highlighting keyboard variants under non-injected and
injected error conditions. Different users were used for
the two studies to prevent learning effects. In each study,
each participant completed four input sessions by copying
14 phrases in each, in balanced order randomly assigned
to participants: Normal keyboard (C1), Normal keyboard
plus injected errors (C2), Highlighting keyboard (C3) and
Highlighting keyboard plus injected errors (C4). We
compiled 4 different phrase sets and again randomized
their allocation to participants, so that the phrase sets did

not correlate to the 4 keyboard conditions. The phrases in
each set were selected from the Enron set [21] in a way
that resulted in similar average phrase lengths for each set
(M1=35.3, SD1=9.9, M2=37.0, SD2=9.5, M3=38.4,
SD3=11.1, M4=35.8, SD4=7.7).

For our experiment we did not include the autocorrect
option, since our desire was to look at how participants
behaved when noticing errors (autocorrect obviously
would have “fixed” some of the errors, hence removing
the opportunity from our participants to do so
themselves).

Throughout the paper we will analyse results using
measures of length and speed of entry, errors while
typing, and participant usage of the keyboard’s suggestion
bar. All data was inspected for normality using Shapiro-
Wilk tests and examining the resulting Q-Q plots.
Subsequent between-subject and within-subject tests were
chosen according to the distribution of the relevant
variables, using named parametric or non-parametric tests
as appropriate. All studies were conducted under
institutional ethical approval. All task sets and anonymous
submitted data are available under open access terms.

STUDY ONE: CHARACTER BY CHARACTER
INJECTED ERRORS

Version 1 – character by character error injection
Our error injection algorithm was developed over two
iterations. In its first version, the algorithm was built to
replace characters at the moment the user had pressed a
key – simulating live errors that might be introduced by
inaccurate tapping on the soft-keyboard.

In a preliminary study involving 23 users (8 aged 50+) we
collected detailed typing data. Participants were asked to
perform a series of copy tasks from the Enron memorable
set and various composition tasks – all using the normal
keyboard. Using log data from this study we developed a
probabilistic model to inject errors into a user's typing in
real-time as they type. In mobile text entry substitution
errors tend to dominate over other types of errors due to
the "fat finger" problem on mobile touch-screens [18] and
this was confirmed by our logging analysis.

As we wanted to exploit all our logging data from users
who typed in both copy and composition tasks, we could
not rely on the “ground truth” of knowing what the user
was typing to assess errors. As such we developed a
heuristic of suspect character: a character would be
considered a suspect character if it was the leftmost
character deleted and replaced through a series of
backspace operations, e.g. if the user typed hrllo followed
by three backspaces and ello the r would be considered a
suspect character replaced with e. Based on the logging of
characters suspected to be input errors and their
replacements, we built a 29x29 matrix (26 alphabet letters
and the space, full-stop and comma characters) to

represent the character substitution frequencies as derived
from our logs.

To model erroneous tapping, each keystroke was given a
probability threshold P(t) = 15% of being selected as a
candidate for a substitution error, in order to limit the total
injection of errors to a realistic level. The threshold value
was determined by examining the dataset and noticing
that 85% of all input sessions had between 0 - 14.6% of
their total input characters marked as “error suspects”.

If selected for substitution the letter was replaced with a
neighbouring letter with a probability based on our
matrix, e.g. the ‘s’ key would most likely be substituted
with 'a' or 'd' followed by other neighbours. To enhance
the realism and provide a "fat-finger" effect, we only
considered the probability of keys belonging to the two-
dimensional set S of all characters within a 2 key width
distance of the target and their substitution frequencies
derived from our original matrix, to reduce the risk of
wrongly modelling non-substitution errors (e.g. other
spelling mistakes).

To achieve this, we build a list of substitutes as follows: If
a neighbouring character Ci has a substitution frequency
F(i) of zero according to our matrix, we remove the
character from S and replace it with the candidate
character Cs (thus creating the set S’). In S’ we set the
frequency of Cs equal to the number of characters with
zero substitution frequency. As an example, if a
substitution candidate character Cs has the neighbouring
characters set S = {Ca, Cb, Cc, Cd, Ce} with substitution
frequencies {F(a)=0, F(b)=1, F(c)=0, F(d)=3, F(e)=1}, the
substitution set S’ will contain {Cs, Cb, Cd, Ce} with
frequencies {F(s)=2 (because Ca and Cc have a frequency
of zero), F(b)=1, F(d)=3, F(e)=1}.

To better simulate a proximity error, we factor into the
probabilities of S’ the distance of each replacement
character key from the key of the character to be replaced,
and enforce a threshold to ensure that only characters up
to 2 keys apart are given a chance for replacement. To
achieve this, we construct a model of the keyboard keys,
taking into account their on-display sizes. We compute
the distance between all the substitutes and the character
to be replaced in units of “standard key distance” (k).
Because our keys are rectangular, the k metric is
computed by halving the sum of a standard alphabetic

letter key width and height (hence, it is between the width
and the height of a typical letter key). To calculate the
distance D(Ci, Cj) thus of two keys in terms of “standard
key sizes” we compute the Euclidian distance E(Ci, Cj) of
the two key centroids’ x and y coordinates and divide this
by k. We then divide the probabilities in S’ by each
substitute’s k value. Any keys that are more than 2 x k
apart, are given an large D value (100 x k), hence
effectively eliminating their chances of being picked.

The resulting probability P(i) thus of a character Ci
belonging to the set S’ to replace character Cs thus
becoming a substitute for the original character is hence
defined as

𝑃(#) = 	𝑃(')×
𝐹(#)
(𝐹 * /𝐷(*,.))*	∈01

	

where F(i) is the frequency in S’ of the substitute character
Ci.

Study Participants and Procedure
We recruited 21 participants (18 m, 3 f; age range: 17-68,
mean 34.4). All participants were regular users of
smartphones with touchscreen keyboards. In this
experiment we enabled the autocorrect option for
participants – as will be seen later, this was
inconsequential, since our participants were very good at
detecting mistakes as they occurred (whether naturally or
injected) and correcting them on the spot.

Results
Results are summarized in table 1.

Speed of typing
The WPM rate was significantly lower during the injected
error conditions for both keyboards (Normal t(20)=2.89,
p=0.009; Highlighting t(20)=2.95, p=0.007, t-test).
Looking in more detail at typing behaviour we also saw
that the injection condition caused our participants to
spend longer between each keystroke (Normal Z=-2.54,
p=0.011; Highlighting Z=-2.88, p=0.004, Wilcoxon).

Errors while typing
In Table 1, we report the average ratios of backspaces and
suspect characters per total typed characters. Injection of
errors led to significantly higher backspace use and an
increased frequency of suspect characters during use of
both keyboards (Backspaces: Normal t(20)=3.30, p0.004;
Highlighting t(20)=4.05, p<0.001. Suspects: Normal

 C1 Norm-Inject C2 Norm+Inject C3 High-Inject C4 High+Inject
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Backspace ratio 0.111 0.550 0.144 0.035 0.108 0.039 0.139 0.034
Suspect key ratio 0.048 0.022 0.065 0.024 0.048 0.020 0.063 0.019

WPM 21.3 8.41 18.7 7.4 21.3 8.3 18.3 6.5
Inter-key Time (ms) 512 382 588 451 531 417 572 410
Picked Suggestions 15.1 28.5 19.6 33.2 15.2 28.3 18.1 28.6

Serious Errors 0.70 1.03 1.20 1.99 0.65 0.88 0.95 1.47
Minor Errors 2.30 3.90 2.60 5.40 3.85 8.13 3.85 7.34

Table 1: Character-by-Character Injected Error Study Results Data

t(20)=-3.63, p=0.002; Highlighting t(20)=5.20, p<0.001,
t-tests).

We analysed errors based on words being committed to
the text area from the keyboard – normally by the user
typing space or punctuation after the word. Table 1 shows
the average serious and minor errors per sentence.
Although mean error rates were higher for injected
conditions, neither the mean increase in serious nor minor
errors was significant (Serious: Normal Z=-0.86, p=0.390;
Highlighting Z=-1.24, p=0.215. Minor: Normal Z=-0.18,
p=0.857; Highlighting Z=-0.68, p=0.497, Wilcoxon).
Likewise the highlight keyboard did appear to result in
more minor errors but this was also not significant.

Suggestion bar usage
Participants preferred to do most of their input character-
by-character and made little use of the suggestion bar
with no difference between conditions (Normal Z=-1.33,
p=0.184; Highlighting Z=-0.80, p=0.424, Wilcoxon).
Table 1 shows the average number of times a suggestion
was picked per sentence. An interesting observation,
however, is that almost all usage of the suggestion bar
came from our older participants (over 50s), while
younger participants almost completely ignored it.

Subjective Feedback
Analysis of NASA TLX data showed no significant
differences for Mental, Physical, Temporal or
Performance metrics. However, in the case of Overall
Effort and Frustration levels the injection did lead to a
difference between the keyboard conditions: the normal
keyboard showed no significant difference with and
without injection, while the highlighting keyboard
showed significantly higher effort (Z=-2.80, p=0.005,
Wilcoxon) and frustration (Z=-2.86, p=0.004, Wilcoxon).

 C1
Norm

-Inject

C2
Norm

+Inject

C3
High

-Inject

C4
High

+Inject

Mental 10.0 9.0 7.5 7.5

Physical 6.0 6.0 7.0 6.5

Temporal 10.0 10.0 10.0 10.0

Performance 8.0 9.5 7.0 9.0

Effort 11.5 13.5 10.0 12.5

Frustration 10.0 11.0 9.0 12.0

Table 2 NASA TLX Median Scores

In a post-study questionnaire participants reported that
they did indeed notice injections as they happened (in
response to “I always noticed the injected errors as I was
typing” users answered with a median of 4 [agree] on a 5
point Likert scale). This is backed by self-reporting of
more careful behaviour while typing (median 4 [agree] to
both “Injected errors made me type more carefully” and
“The injected errors changed how I typed”). However

participants also supported the “realism” of the mistakes
being injected into the text (“The injected errors were
similar to errors I make when typing quickly on my
phone” and “The injected errors were similar to errors I
make when typing on my phone while on the move” both
median 4). Where they disagreed was with the frequency
of injected error appearance, they thought that this differs
from what they would observe in real life (median 2
[disagree] to both “The frequency of injected errors was
similar to the frequency of errors I make while typing
quickly” and “The frequency of injected errors was
similar to the frequency of errors I make while typing on
the move”). In discussion it was clear they felt we were
injecting somewhat more, but not excessively more,
errors.

Discussion and Limitations
Taken together the results on increased backspace usage,
longer inter-key times and no significant difference in
error insertion strongly indicates that users simply slowed
their typing to correct injections as they typed rather than
correcting words after completion.

Although there’s some evidence of increased errors by
some users, overall users simply slowed down to keep
entry accurately character-by-character. As a result our
error supporting mechanisms were still not being
exercised and we were not noticeably increasing error
rates. A pattern is emerging that in our lab studies users
react to test situations by typing as slowly as necessary to
maintain very high typing quality.

STUDY TWO: WORD BY WORD INJECTED ERRORS
Character-by-character injection succeeded in introducing
errors that were, overall, considered to be realistic by
users. However, the method had too strong an effect on
typing behaviour with users slowing down typing
considerably to compensate. As an alternative we
investigated injecting errors after each word was
completed rather than on a key-by-key basis and
introduced version 2 of our injected errors algorithm. This
variant is similar to auto-correction replacing words with
unintended words when the word is completed, except in
our case the resulting word is unlikely to be a valid
dictionary word.

Following the results of study 1, we amended the
algorithm so that it would only effect error injections after
the user had finished typing in a word. Because the
algorithm is agnostic to the length of the input word, there
are possibilities (although small) that more than one
characters in the same word may be replaced, resulting in
final input that seems unlikely (e.g. because the characters
‘t’ and ‘r’ have a high likelihood of being replaced with
‘y’ and ‘e’ respectively, a user may have typed in the
word ‘try’ only to see it being replaced with ‘yey’- a level
of error injection we felt would be excessively
noticeable). To prevent such problems, we limit the
number of allowed replacements within any given word w

to [1, (0.25 x L(w))] where L(w) is the word length. If the
number of replacements exceeds the replacement cap,
then we reduce the number of replacements down to the
upper limit by removing as many replacements as
required in a random manner. The cap is enforced only
after the user has finished typing a word and the errors are
injected into the completed word, replacing the characters
the user has already typed in.

Given this process, we handle the deletion of characters
during the composition of a word as follows: Say for
example that the user typed in the word “toying” and as
they get to the final character, and before pressing a word
terminator such as space, full stop, comma etc., decide to
change the word to “toyed”. Also let’s assume in this
example that the algorithm determined that the character
‘o’ will be replaced by a neighbouring character, e.g. ‘i’,
and that the character ‘n’ will be replaced by ‘b’, when
the user has finished typing. As the user starts to
backspace, the algorithm will keep the ‘i for o’
substitution, as this precedes the characters that have been
deleted, and the ‘b for n’ substitution will be discarded.
As the user continues to type the characters following the
sequence ‘toy-‘, the algorithm will calculate the
replacement probabilities for any new characters being
input.

Study Participants and Procedure
We recruited 20 participants (13 m, 7 f; age range: 22-33,
mean 26.05). Again all participants were regular users of
smartphones with touchscreen keyboards. Our aim was to
discover whether the modified injection algorithm
encourages participant behaviour during input and
whether it provides more opportunities to study
participant behaviour in handling errors during input. Our
aim was that the injection algorithm should not
significantly affect the core properties of participant
behaviour during typing, but should provide more
opportunities to investigate behaviours and strategies
when noticing errors. To this end, we performed a second
study using the same 2x2 design (keyboards and
injection).

Results
Results are summarized in Table 3 and Figure 2.

Speed of typing
With regard to the WPM rate, in both keyboards
participants exhibited a statistically significant lower
WPM rate in the injected condition (Normal t(19)=4.813,
p<0.001 t-test, Highlighted Z=-3.136, p=0.002
Wilcoxon). It is noteworthy however that the difference is
small, approximately 3-4WPM in both cases. These
findings are in line with those of the previous experiment.
With regard to inter-key times, we find a statistically
significant difference only in the Normal keyboard
(t(19)=-3.537, p=0.002, t-test), whereas in our previous
experiment, this difference was observed in both
keyboards.

Errors while typing
In Table 3, we report the average ratios of backspaces and
suspect characters per total typed characters. We observed
that in both keyboards, the injected condition caused
heavier usage of the backspace key, as was expected. This
difference was statistically significant both in the Normal
(Z=-3.883, p<0.001, Wilcoxon) and Highlighted
keyboards (t(18)=-3.963, p<0.001). This finding contrasts
the results of our previous experiment, where the
participants were able to notice injected errors as they
occurred. We noted also that the suspect character ratio
was statistically significant only for the Normal keyboard
(Z=-3.360, p<0.001), compared to our previous
experiment where this difference was statistically
significant in both. It is interesting here to note that the
injected conditions increased the number of backspaces
disproportionately to the number of resulting suspect
characters, which indicates that in the injected conditions,
errors were spotted at places nearer the beginning of a
word, hence requiring more backspaces to fix.

Regarding minor and serious mistakes, Table 3 shows the
average serious and minor errors per sentence. The
injected condition clearly caused more to appear in both
keyboards (Minor: Normal Z=-3.922, p<0.001, Wilcoxon,
Highlighted: t(19)=-12.944, p<0.001, t-test, Serious:
Normal Z=-3.469, p<0.001, Wilcoxon, Highlighted Z=-
3.433, p<0.001 Wilcoxon). This was an expected result
from the way our algorithm was modified to behave.

Suggestion bar usage
In terms of suggestion picking behaviour, we did not
discover any statistically significant differences in the

 C1 Norm – Inject C2 – Norm + Inject C3 High – Inject C4 High + Inject
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Backspace ratio 0.06 0.03 0.13 0.03 0.08 0.03 0.13 0.04
Suspect key ratio 0.04 0.02 0.05 0.02 0.04 0.02 0.05 0.02

WPM 21.94 3.54 18.27 2.11 21.5 4.54 17.72 2.62
Interkey time (ms) 421 127 505 122 457 118 484 99
Picked suggestions 0.99 1.03 1.00 1.27 0.75 1.08 0.79 0.76

Serious errors 0.14 0.08 0.30 0.15 0.15 0.10 0.34 0.13
Minor errors 0.34 0.27 1.51 0.55 0.45 0.26 1.53 0.33

Input accuracy 0.19/0.20 0.26/0.35 0.40/0.32 0.40/0.30 0.11/0.10 0.14/0.11 0.38/0.33 0.38/0.39
Table 3: Word-by-Word Completion Injected Error Study Results Data

means, for both keyboards. Table 3 shows the average
number of times a suggestion was picked per sentence.

Input accuracy
Given that our algorithm successfully caused the
emergence of significantly more serious and minor
mistakes, we were able in this case to discover whether
our participants were able to detect these and make the
necessary corrections before submitting their text. Table 3
shows the average Levenshtein distance per sentence
(calculated by converting to lower case and trimming
punctuation and trailing spaces) for the entire submitted
sentence and with the last word removed (see below for
explanation).

In both the Normal and Highlighted keyboards, we notice
that the differences in participants’ average Levenshtein
string distance between submitted and requested text was
higher with statistical significance in the injected
conditions (Normal: Z=-2.272, p=0.023, Wilcoxon,
Highlighted: Z=-2.850, p=0.004, Wilcoxon). This result
shows that participants’ input accuracy suffered due to the
injection of errors, of which a larger percentage went
undetected during submission when the injection
condition was enabled. Here we were somewhat
concerned that our Highlighted keyboard’s error detection
support mechanisms did not allow participants to detect
the mistakes and correct them. We noted that most of the
uncorrected mistakes occurred at the end of input, for
participants that forgot to press the full-stop character at
the end and immediately pressing the “submit” button.
The session ending caused injections in the last word to
be affected, without giving our participants a chance to
correct the mistake. Further analysis with the removal of
the last word from each submission led to slightly reduced
means for average distance (Normal: Z = -1.835, p=0.066,
Highlighted: Z= -2.388, p<0.05, Wilcoxon) with little
effect on non-injected conditions (Figure 2e).

Subjective Feedback
In Study 2, the NASA TLX results (Table 4) showed that
injection caused a higher mental demand in the Normal
keyboard (Z=-2.472, p=0.013, Wilcoxon) but not the
highlighted keyboard. Additionally, participants felt their
performance was worsened during the injected condition
with the Normal keyboard (Z=2.400, p=0.016, Wilcoxon)
but not the Highlighted keyboard. Effort was again
greater in the Normal keyboard with the injected
condition (Z=-3.131, p=0.002, Wilcoxon) but not the
Highlighted keyboard. Frustration however was greater in
both keyboards with the injected condition (Normal: Z=-
3.731, p<0.001, Highlighted: Z=-2.490, p=0.013,
Wilcoxon). Physical and Temporal demand did not
exhibit any statistically significant differences due to the
injected condition, in both keyboards.

(a)

(b)

(c)

(d)

(e)

Figure 2. Participant behaviour in study 2.

C1 C2 C3 C4

Norm Norm High High
-Inject +Inject -Inject +Inject

Mental 10.0 9.0 8.0 9.0
Physical 7.0 6.0 7.0 7.0
Temporal 10.0 10.0 10.0 10.0
Performance 9.0 10.0 7.5 9.5
Effort 11.5 13.0 10.5 12.0
Frustration 10.0 11.0 9.0 12.0

Table 4: Study 2 NASA TLX Medians

Studying participant behaviour during errors
Given that our injection algorithm caused the appearance
of more serious and minor mistakes in both keyboards,
our next goal was to determine whether this provides
more opportunities to observe participant behaviour
strategies in correcting mistakes when they are spotted.
One such metric of correction strategies is to look at the
backspacing sequences employed by participants. We
note here that our keyboard does not support a “long-
press” of the backspace key (which in some keyboards
results in deletion of an entire word), hence each
backspace press (even long ones) deletes exactly one
character. By looking at the instances of consecutive
backspace presses and the length of these sequences, we
observe that in both keyboards, the injected condition
causes a higher frequency of longer backspace sequences.
In the non-injected conditions, 90% of all backspacing
sequences are up to 3 (Normal) or 4 (Highlighted)
backspaces long. In contrast, in injection conditions, the
90% cut-off is at 6 consecutive backspaces, indicating
clearly that our algorithm provides more opportunities to
examine participant behaviour when mistakes are detected
only after a word has been typed, or when they are early
into a relatively long word (e.g. forcing participants to
make a choice on whether to consecutively backspace,
hence possibly missing their target, or to attempt to move
the cursor at or near the position of the mistake).

Figure 3. Frequency of employing the sequential

backspacing correction strategy

Figure 4. Inter-key times in single and consecutive

backspaces

By electing to move the cursor to a previous position in
the text instead of consecutively backspacing, a user
postpones interaction with the keyboard keys in order to
have to press a small number of backspaces (one or two,
if they have accurately positioned the cursor near the
mistake). Effects of such behaviour are noticeable in our
results, if we consider the average inter-key time in each
sequence of backspaces. We can clearly see that single
backspace sequences exhibit a longer average inter-key
time, which drops dramatically for double, and then
continues to drop for multiple consecutive backspaces.
We can see that in the injected conditions, these inter-key
times (particularly for 1 and 2 backspaces) are longer,
showing that participants took longer to move the cursor
(i.e. the spotted mistake was earlier in the text) than in
non-injected conditions, hence the injection algorithm
affords researchers opportunities to study the movement
of cursors to detect mistakes as a strategy.

We notice also that our algorithm provides ample
opportunity to study behaviour during extreme
backspacing that spans multiple words (e.g. 51 and 62
cases of 7-12 consecutive backspaces in the injected
condition Normal & Highlight keyboards respectively,
compared to just 12 and 22 in the non-injected condition).

CONCLUSION
In previous studies we noticed that participants in a lab
environment were especially careful during input,
correcting mistakes as they occurred and checking each
letter as it was being type. This provided very little
opportunity to study their behaviour in correcting
mistakes that had gone unnoticed, made it difficult to try
out novel mechanisms for assisting in the spotting of
mistakes as they occur during input. In contrast with
participants’ expressed concerns over undetected errors in
text, particularly when sent to another person, along with
the commonplace understanding of how embarrassing
auto-correct can be when it replaces words out of context
to the intended message, we were unable to reproduce
enough behaviour of this type in the constraints of lab
studies without involving either a large number of

participants, or assigning participants a significantly
larger workload in terms of input tasks. In Study 1, we
attempted to artificially overcome participants’ careful
behaviour by injecting artificial but realistic errors in their
input, as it took place. Despite overall feeling that the
errors were representative, taken together the results on
increased backspace usage, longer inter-key times and no
significant difference in error insertion strongly indicates
that users simply slowed their typing to correct injections
as they typed rather than correcting words after
completion.

In contrast, Study 2 was much more successful in
bringing out a wider diversity of error management
strategies by users. We saw during the use of both
keyboards clear evidence of different patterns during
backspace usage, including an increased frequency of
longer backspace sequences and evidence of strategic
decisions on positioning the cursor near a mistake, rather
than just backspacing. Furthermore, participants did not
perceive that injected errors caused a greater temporal
demand in either case.

As stated in the introduction, the purpose of this paper
was not to examine whether the highlighting method
offers any advantages in detecting and fixing errors,
compared to a plain QWERTY keyboard. Our purpose
was to test whether the injected algorithm can provide
more opportunities for researchers to study error
management behaviour in a lab setting, without requiring
great numbers of participants or burdening the
participants with an excessive number of tasks to
complete. To this end we feel that our algorithm has
shown promise in enticing a greater frequency and
diversity of error correction behaviours, which deserve
further research. As such we recommend use of word-by-
word error injection in studies that wish to investigate
user correction behaviour or support mechanisms.

We have noticed in our experiments that participants
frequently “context-switch”, i.e. shift the focus of their
attention between the keyboard and the input area, to
check for mistakes. The design of multimodal feedback
cues to remove the need for such frequent context-
switches may yield performance improvements that can
be tested using lab tasks and our algorithm. The algorithm
itself can be improved to position the injected errors
further from the current focus of the user’s attention. For
example, instead of modifying the word that has just been
composed, the algorithm could be easily made to modify
characters in the previous two or three words, hence
making it more difficult for the user to immediately notice
any changes But at a further cost in realism. A hybrid
approach of infrequently injecting character-by-character
errors along with word-by-word errors may also prove
productive and be more realistic. Other improvements
may include a learning, adaptive strategy which will be
trained by each individual user’s own mistakes and thus

produce errors which are more realistic to each individual
user. Our suspect character heuristic would permit in-the-
wild collection of data in a manner that does not require
recording of full text-entry and thus could avoid some
privacy concerns.

At this time we are continuing our research and hope to
be able to report on the design of new feedback and
support mechanisms for mobile text entry, as well as
modifications and improvements to our method.

The source code for our keyboard and all data described
in this paper are at <anonymised-URL> .

ACKNOWLEDGEMENTS
Left blank for review

REFERENCES
1. Tao Chen and Min-Yen Kan. 2012. Creating a live,

public short message service corpus: the NUS SMS
corpus. Language Resources and Evaluation 47, 2:
299–335. http://doi.org/10.1007/s10579-012-9197-9

2. Niels Henze, Enrico Rukzio, and Susanne Boll. 2012.
Observational and Experimental Investigation of
Typing Behaviour Using Virtual Keyboards for
Mobile Devices. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM, 2659–2668.
http://doi.org/10.1145/2207676.2208658

3. Akiyo Kano, Janet C Read, and Alan Dix. 2006.
Children’s Phrase Set for Text Input Method
Evaluations. Proceedings of the 4th Nordic
Conference on Human-computer Interaction:
Changing Roles, ACM, 449–452.
http://doi.org/10.1145/1182475.1182534

4. Clare-Marie Karat, Christine Halverson, Daniel Horn,
and John Karat. 1999. Patterns of Entry and Correction
in Large Vocabulary Continuous Speech Recognition
Systems. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, 568–
575. http://doi.org/10.1145/302979.303160

5. Jesper Kjeldskov, Mikael B Skov, Benedikte S Als,
and Rune T Høegh. 2004. Is it worth the hassle?
Exploring the added value of evaluating the usability
of context-aware mobile systems in the field. In
Mobile human-computer interaction-MobileHCI 2004.
Springer, 61–73.

6. Andreas Komninos, Emma Nicol, and Mark Dunlop.
2014. Reflections on design workshops with older
adults for touchscreen mobile text entry. Interaction
Design and Architecture, 21: 70–85.

7. Andreas Komninos, Emma Nicol, and Mark D
Dunlop. 2015. Designed with Older Adults to Support
Better Error Correction in SmartPhone Text Entry:
The MaxieKeyboard. Mobile HCI 2015 Posters,
ACM.

8. Per Ola Kristensson. 2009. Five challenges for
intelligent text entry methods. AI Magazine 30, 4: 85.

9. Per Ola Kristensson and Keith Vertanen. 2014. The
inviscid text entry rate and its application as a grand
goal for mobile text entry. ACM, 335–338.

10. Per-Ola Kristensson and Shumin Zhai. 2005. Relaxing
Stylus Typing Precision by Geometric Pattern
Matching. Proceedings of the 10th International
Conference on Intelligent User Interfaces, ACM, 151–
158. http://doi.org/10.1145/1040830.1040867

11. Sunghyuk Kwon, Donghun Lee, and Min K. Chung.
2009. Effect of key size and activation area on the
performance of a regional error correction method in a
touch-screen {QWERTY} keyboard. International
Journal of Industrial Ergonomics 39, 5: 888 – 893.
http://doi.org/http://dx.doi.org/10.1016/j.ergon.2009.0
2.013

12. Vladimir I Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions and reversals. Soviet
physics doklady, 707.

13. I Scott MacKenzie, R Blair Nonnecke, J Craig
McQueen, Stan Riddersma, and Malcolm Meltz. 1994.
A comparison of three methods of character entry on
pen-based computers. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting,
SAGE Publications, 330–334.

14. I. Scott MacKenzie and R. William Soukoreff. 2003.
Phrase Sets for Evaluating Text Entry Techniques.
CHI ’03 Extended Abstracts on Human Factors in
Computing Systems, ACM, 754–755.
http://doi.org/10.1145/765891.765971

15. I. Scott MacKenzie and Kumiko Tanaka-Ishii. 2007.
Text Entry Systems: Mobility, Accessibility,
Universality. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

16. Jillian Madison. 2012. Damn You, Autocorrect!
Random House.

17. Tim Paek and Bo-June (Paul) Hsu. 2011. Sampling
Representative Phrase Sets for Text Entry
Experiments: A Procedure and Public Resource.

Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 2477–2480.
http://doi.org/10.1145/1978942.1979304

18. Katie A. Siek, Yvonne Rogers, and Kay H. Connelly.
2005. Fat Finger Worries: How Older and Younger
Users Physically Interact with PDAs. Proceedings of
the 2005 IFIP TC13 International Conference on
Human-Computer Interaction, Springer-Verlag, 267–
280. http://doi.org/10.1007/11555261_24

19. R. William Soukoreff and I. Scott MacKenzie. 2001.
Measuring Errors in Text Entry Tasks: An Application
of the Levenshtein String Distance Statistic. CHI ’01
Extended Abstracts on Human Factors in Computing
Systems, ACM, 319–320.
http://doi.org/10.1145/634067.634256

20. R. William Soukoreff and I. Scott MacKenzie. 2003.
Metrics for Text Entry Research: An Evaluation of
MSD and KSPC, and a New Unified Error Metric.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 113–120.
http://doi.org/10.1145/642611.642632

21. Keith Vertanen and Per Ola Kristensson. 2011. A
Versatile Dataset for Text Entry Evaluations Based on
Genuine Mobile Emails. Proceedings of the 13th
International Conference on Human Computer
Interaction with Mobile Devices and Services, ACM,
295–298. http://doi.org/10.1145/2037373.2037418

22. Keith Vertanen and Per Ola Kristensson. 2014.
Complementing Text Entry Evaluations with a
Composition Task. ACM Trans. Comput.-Hum.
Interact. 21, 2: 8:1–8:33.
http://doi.org/10.1145/2555691

23. Jacob O. Wobbrock and Brad A. Myers. 2006.
Analyzing the Input Stream for Character- Level
Errors in Unconstrained Text Entry Evaluations. ACM
Trans. Comput.-Hum. Interact. 13, 4: 458–489.
http://doi.org/10.1145/1188816.1188819

