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ABSTRACT 
During lab studies of text entry methods it is typical to 
observer very few errors in participants’ typing – users 
tend to type very carefully in labs. This is a problem when 
investigating methods to support error awareness or 
correction as support mechanisms are not tested. We 
designed a novel evaluation method based around 
injection of errors into the user’s typing stream and report 
two user studies on the effectiveness of this technique. 
Injection allowed us to observe a larger number of 
instances and more diverse types of error correction 
behaviour than would normally be possible in a single 
study, without having a significant impact on key input 
behaviour characteristics. Qualitative feedback from both 
studies suggests that our injection algorithm was 
successful in creating errors that appeared realistic to 
participants. The use of error injection shows promise for 
the investigation of error correction behaviour in text 
entry studies. 
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INTRODUCTION 
Text entry is still core to much interaction with most 
computing devices including desktops, laptops, tablets, 
smartphones and increasingly smart TVs. There is a long 
and still very active history of research on developing 
new text entry methods for mobile phones, tablets, tables, 
watches and other platforms (e.g. [13][10][15]). Much of 
text entry research is based around comparing mobile text 
entry solutions through formal user-based evaluation (e.g. 
[13][20][22]). The evaluation of text entry approaches is 
key to moving the field forward, for example to achieve 
the challenge of inviscid text entry [9]. However, 
laboratory studies tend to result in very low error rates as 
users focus carefully on their typing. "In-the-wild" studies 

of users using their devices in their normal lives give the 
most realistic insight into mobile usage (e.g. [5]). For text 
entry studies in-the-wild studies can reveal behaviour of 
use patterns and has shown to be usable for improving 
text entry performance (e.g. [2]). However, in-the-wild 
studies are less controlled and replicable than lab based 
studies, are more time consuming to run, harder to recruit 
for as the impact is higher on participants and more 
complex for practitioners to adopt as keyboards have to 
be “production quality” to support usage outside the lab. 
Finally, there can be complex ethical, security and data-
protection issues in logging the day-to-day text entry data 
that gives the truest insight into typing behaviour. 

Error correction has been shown to be particularly 
important on touch screens with small keys (e.g. [11]) and 
was seen as one of the challenges for intelligent text entry 
[8]. Support for error awareness and correction have also 
been identified as a strongly desired features in studies on 
older adult smartphone usage [6]. Furthermore, auto-
corrections errors, when current correction mechanisms 
fail, are widely discussed in the press as a problem of 
modern mobile text entry (e.g. [16]).  

In this paper we present our findings of studying a novel 
evaluation method using both a baseline and an enhanced 
keyboard design, and reflect on the ability of the different 
study techniques to provide insights on users’ text entry 
correction behaviour. We present a novel laboratory study 
technique using random-but-realistic automatic injection 
of errors into users’ typing as they type and not on how 
our keyboard performed compared to a baseline keyboard. 
The paper first presents the background to text entry 
studies. We then give an overview of the case-study 
keyboard that is designed to support error awareness. 
Structured around the reporting of two user studies, the 
bulk of the paper focuses on our investigations into typing 
with injected errors using two approaches. We conclude 
with recommendations on using the technique to augment 
traditional laboratory text entry studies to gain more 
insight into user behaviour in error-prone situations. 

BACKGROUND: TEXT ENTRY EVALUATION 
The text entry community has widely adopted a standard 
approach to studies that involves users being asked to 
copy or transcribe a set of fixed phrases. The time that 
users take and number of errors they make are used as 
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metrics to compare text entry within a study. To allow 
comparison between studies, standard phrase sets are now 
widely used. The two most widespread are the 
MacKenzie and Soukoreff’s original 500 short-phrases set 
[14] (e.g. Have a good weekend) and the Enron Mobile 
collection [21] of phrases that were written on mobiles 
(e.g. Can you help me here?). There are various other 
specific collections such as an SMS corpus [1] and a child 
oriented corpus [3]. Paek and Hsu argue for the use of 
transcription tasks by stating that “It is difficult, for 
example, to claim that one input technique performed 
better than another if participants using one or the other 
technique just happened to produce longer, more 
complicated phrases” [17]. While the approach of fixed 
phrase copying gives strong internal consistency, 
reproducibility and study homogeneity advantages, the 
scenario of copying phrases is clearly not representative 
of most mobile text entry. Furthermore, a counter 
argument to [17] is that longer, more complicated user 
input with a particular keyboard may be indicative of that 
keyboard better supporting that user’s natural typing style 
than, say, a simpler keyboard. As such there has been 
some investigation into complementing transcription tasks 
with more free-form entry. 

An alternative to copy tasks is to ask users to generate 
text in composition tasks. Karat et al. [4] compared 
copying sections of a novel with composing replies to 
scenarios and found composition speed was 58% of that 
for coping. Vertanen and Kristensson [22] investigated 
complementing copy tasks with composition tasks by 
asking users to (a) reply to a message, (b) compose a 
message without scenario prompting and (c) compose 
with scenario prompting. They showed that composition 
tasks had an entry rate of 65-85% of the copy tasks 
depending on task type and that typed responses varied in 
length between 55% and 135% of copy tasks. They 
concluded that “providing participants with a simple 
instruction of creating a short message in the domain of 
interest was successful in getting participants to quickly 
invent and compose text. It does not appear necessary to 
provide participants with a specific situation or message 
in order to help them invent a message.” Thus it seems 
that the use of composition in text entry evaluation has 
potential for further exploration but that it is difficult to 
generate longer messages than copy tasks.  

The focus on much text entry evaluation is on speed of 
entry, usually measured in words-per-minute (WPM) 
following touch-typing tradition. However, accuracy is 
also important. In experimental conditions users are 
normally asked to type “quickly but accurately” and this 
typically results in low error rates in final submissions. 
Despite the typically low in-lab error rates, it is still 
prudent to check the correctness of final user input during 
studies in case a particular keyboard is error-prone and to 
reduce the opportunity for participants to “game” the 
study tasks. For copy tasks, edit distance can be used a 

measure of accuracy of the final phrase [19][12] or a 
unified measure for combining errors in the final phase 
with corrected errors as typing proceeds [20]. For 
composition tasks correctness can be inspected manually 
(either by the researchers or crowd sourcing [22]), by 
simply counting out-of-dictionary word rates or by 
monitoring the input stream for text corrections [23]. 
Given the limitations of transcription tasks and our 
experience of transcriptions tasks still leading to very few 
typing errors we wanted to explore alternatives that focus 
on error awareness. 

TOUCHSCREEN DESIGN FOR ERROR CORRECTION 
In order to conduct comparative text entry studies we 
investigated the techniques using a case study based 
around a keyboard that was initially designed to support 
older adults [7], but which has error support and 
awareness features that have a wider potential audience. 
Our experience in lab studies using older and younger 
participants alike, have often shown very low error rates – 
thus few opportunities to explore behaviour on error 
detection and correction strategies in mobile text entry, or 
usage of error support features. Hence the main 
motivation behind our error injection technique, which 
was aimed to bring out more of this type of participant 
behaviour than is normally achievable during copy tasks. 
Before discussing the injected error technique, we will 
describe the keyboard whose novel error support 
mechanisms we aimed to evaluate. 

Study keyboard: The Highlighting Keyboard 
We investigated usage of an Android keyboard developed 
to increase awareness of text entry errors [7]. The 
keyboard has a standard QWERTY soft keyboard layout 
with word suggestions that is augmented with two 
primary features to support error correction (see Figure 1 
left): a colour bar for feedback on accuracy after typing a 
word, and highlighting of words within the main 
composition area (outside the traditional keyboard 
interaction area). The word highlighting was designed to 

 
Figure 1: Overview of the Highlighting Keyboard (left) and 

Normal Keyboard (right)  



 

emphasize errors and to support post-typing review of 
entered text while the coloured feedback bar was designed 
to give more transient feedback during typing itself and 
near the input focus. When finished typing a word, the 
keyboard automatically checks the spelling of the last 
word and gives the following feedback: 

• Red highlight and red bar when a word is 
incorrectly spelled and the system is not confident 
of offering a good correction (a serious mistake); 

• Orange highlight and orange bar when a word is a 
slight mistake and has been autocorrected as the 
spell checker has high confidence, or yellow 
highlighting if autocorrect is disabled (a minor 
mistake); 

• No highlighting and green bar for a known word. 

The highlighting remains visible throughout the text entry 
sessions in order to support post-typing review. When 
reviewing text, tapping on a red highlight shows 
suggested spell corrections in the suggestion bar of the 
keyboard, while tapping on an orange word shows the 
original typed word and alternative suggestions. Auto-
completions, corrections and next word suggestions are 
shown on a suggestion bar as standard in many soft-
keyboards.  

The keyboard’s error-support features supplemented those 
already available on Android and were individually 
controllable through settings, allowing us to compare 
Highlighting and Normal study conditions (Figure 1). The 
Normal keyboard (Figure 1 right) is a simple QWERTY 
keyboard with a word suggestion bar; the Highlighting 
keyboard (Figure 1 left) also included the error feedback 
colour bar and highlighting features. Using these 
keyboard conditions, this paper reports on two studies 
into text entry behaviour, describing the evolution of our 
injected error algorithm.  

STUDY DESIGN AND REPORTING 
In order to assess error support features of the keyboard 
and to get feedback from participants on its design, we 
ran studies with participants performing text entry tasks 
on the two variants of the keyboard by changing only the 
settings options (Figure 1 left vs right). A balanced 
experimental design was followed to investigate the two 
variants: character-by-character injection and post word 
completion injection (studies 1 and 2). Each study was a 
2x2 within-subject design comparing the normal and 
highlighting keyboard variants under non-injected and 
injected error conditions. Different users were used for 
the two studies to prevent learning effects. In each study, 
each participant completed four input sessions by copying 
14 phrases in each, in balanced order randomly assigned 
to participants: Normal keyboard (C1), Normal keyboard 
plus injected errors (C2), Highlighting keyboard (C3) and 
Highlighting keyboard plus injected errors (C4). We 
compiled 4 different phrase sets and again randomized 
their allocation to participants, so that the phrase sets did 

not correlate to the 4 keyboard conditions. The phrases in 
each set were selected from the Enron set [21] in a way 
that resulted in similar average phrase lengths for each set 
(M1=35.3, SD1=9.9, M2=37.0, SD2=9.5, M3=38.4, 
SD3=11.1, M4=35.8, SD4=7.7). 

For our experiment we did not include the autocorrect 
option, since our desire was to look at how participants 
behaved when noticing errors (autocorrect obviously 
would have “fixed” some of the errors, hence removing 
the opportunity from our participants to do so 
themselves). 

Throughout the paper we will analyse results using 
measures of length and speed of entry, errors while 
typing, and participant usage of the keyboard’s suggestion 
bar. All data was inspected for normality using Shapiro-
Wilk tests and examining the resulting Q-Q plots. 
Subsequent between-subject and within-subject tests were 
chosen according to the distribution of the relevant 
variables, using named parametric or non-parametric tests 
as appropriate. All studies were conducted under 
institutional ethical approval. All task sets and anonymous 
submitted data are available under open access terms. 

STUDY ONE: CHARACTER BY CHARACTER 
INJECTED ERRORS  

Version 1 – character by character error injection 
Our error injection algorithm was developed over two 
iterations. In its first version, the algorithm was built to 
replace characters at the moment the user had pressed a 
key – simulating live errors that might be introduced by 
inaccurate tapping on the soft-keyboard. 

In a preliminary study involving 23 users (8 aged 50+) we 
collected detailed typing data. Participants were asked to 
perform a series of copy tasks from the Enron memorable 
set and various composition tasks – all using the normal 
keyboard. Using log data from this study we developed a 
probabilistic model to inject errors into a user's typing in 
real-time as they type. In mobile text entry substitution 
errors tend to dominate over other types of errors due to 
the "fat finger" problem on mobile touch-screens [18] and 
this was confirmed by our logging analysis.  

As we wanted to exploit all our logging data from users 
who typed in both copy and composition tasks, we could 
not rely on the “ground truth” of knowing what the user 
was typing to assess errors. As such we developed a 
heuristic of suspect character: a character would be 
considered a suspect character if it was the leftmost 
character deleted and replaced through a series of 
backspace operations, e.g. if the user typed hrllo followed 
by three backspaces and ello the r would be considered a 
suspect character replaced with e. Based on the logging of 
characters suspected to be input errors and their 
replacements, we built a 29x29 matrix (26 alphabet letters 
and the space, full-stop and comma characters) to 



 

represent the character substitution frequencies as derived 
from our logs. 

To model erroneous tapping, each keystroke was given a 
probability threshold P(t) = 15% of being selected as a 
candidate for a substitution error, in order to limit the total 
injection of errors to a realistic level. The threshold value 
was determined by examining the dataset and noticing 
that 85% of all input sessions had between 0 - 14.6% of 
their total input characters marked as “error suspects”. 

If selected for substitution the letter was replaced with a 
neighbouring letter with a probability based on our 
matrix, e.g. the ‘s’ key would most likely be substituted 
with 'a' or 'd' followed by other neighbours. To enhance 
the realism and provide a "fat-finger" effect, we only 
considered the probability of keys belonging to the two-
dimensional set S of all characters within a 2 key width 
distance of the target and their substitution frequencies 
derived from our original matrix, to reduce the risk of 
wrongly modelling non-substitution errors (e.g. other 
spelling mistakes).  

To achieve this, we build a list of substitutes as follows: If 
a neighbouring character Ci has a substitution frequency 
F(i) of zero according to our matrix, we remove the 
character from S and replace it with the candidate 
character Cs (thus creating the set S’). In S’ we set the 
frequency of Cs equal to the number of characters with 
zero substitution frequency. As an example, if a 
substitution candidate character Cs has the neighbouring 
characters set S = {Ca, Cb, Cc, Cd, Ce} with substitution 
frequencies {F(a)=0, F(b)=1, F(c)=0, F(d)=3, F(e)=1}, the 
substitution set S’ will contain {Cs, Cb, Cd, Ce} with 
frequencies {F(s)=2 (because Ca and Cc have a frequency 
of zero), F(b)=1, F(d)=3, F(e)=1}. 

To better simulate a proximity error, we factor into the 
probabilities of S’ the distance of each replacement 
character key from the key of the character to be replaced, 
and enforce a threshold to ensure that only characters up 
to 2 keys apart are given a chance for replacement. To 
achieve this, we construct a model of the keyboard keys, 
taking into account their on-display sizes. We compute 
the distance between all the substitutes and the character 
to be replaced in units of “standard key distance” (k). 
Because our keys are rectangular, the k metric is 
computed by halving the sum of a standard alphabetic 

letter key width and height (hence, it is between the width 
and the height of a typical letter key). To calculate the 
distance D(Ci, Cj) thus of two keys in terms of “standard 
key sizes” we compute the Euclidian distance E(Ci, Cj) of 
the two key centroids’ x and y coordinates and divide this 
by k. We then divide the probabilities in S’ by each 
substitute’s k value. Any keys that are more than 2 x k 
apart, are given an large D value (100 x k), hence 
effectively eliminating their chances of being picked.  

The resulting probability P(i) thus of a character Ci 
belonging to the set S’ to replace character Cs thus 
becoming a substitute for the original character is hence 
defined as  

𝑃(#) = 	𝑃(')×
𝐹(#)
(𝐹 * /𝐷(*,.))*	∈01

	

where F(i) is the frequency in S’ of the substitute character 
Ci. 

Study Participants and Procedure 
We recruited 21 participants (18 m, 3 f; age range: 17-68, 
mean 34.4). All participants were regular users of 
smartphones with touchscreen keyboards. In this 
experiment we enabled the autocorrect option for 
participants – as will be seen later, this was 
inconsequential, since our participants were very good at 
detecting mistakes as they occurred (whether naturally or 
injected) and correcting them on the spot. 

Results 
Results are summarized in table 1.   

Speed of typing  
The WPM rate was significantly lower during the injected 
error conditions for both keyboards (Normal t(20)=2.89, 
p=0.009; Highlighting t(20)=2.95, p=0.007, t-test). 
Looking in more detail at typing behaviour we also saw 
that the injection condition caused our participants to 
spend longer between each keystroke (Normal Z=-2.54, 
p=0.011; Highlighting Z=-2.88, p=0.004, Wilcoxon).  

Errors while typing 
In Table 1, we report the average ratios of backspaces and 
suspect characters per total typed characters. Injection of 
errors led to significantly higher backspace use and an 
increased frequency of suspect characters during use of 
both keyboards (Backspaces: Normal t(20)=3.30, p0.004; 
Highlighting t(20)=4.05, p<0.001. Suspects: Normal 

 C1 Norm-Inject C2 Norm+Inject C3 High-Inject C4 High+Inject 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Backspace ratio 0.111 0.550 0.144 0.035 0.108 0.039 0.139 0.034 
Suspect key ratio 0.048 0.022 0.065 0.024 0.048 0.020 0.063 0.019 

WPM 21.3 8.41 18.7 7.4 21.3 8.3 18.3 6.5 
Inter-key Time (ms) 512 382 588 451 531 417 572 410 
Picked Suggestions 15.1 28.5 19.6 33.2 15.2 28.3 18.1 28.6 

Serious Errors 0.70 1.03 1.20 1.99 0.65 0.88 0.95 1.47 
Minor Errors 2.30 3.90 2.60 5.40 3.85 8.13 3.85 7.34 

         
Table 1: Character-by-Character Injected Error Study Results Data 



 

t(20)=-3.63, p=0.002; Highlighting t(20)=5.20, p<0.001, 
t-tests).  

We analysed errors based on words being committed to 
the text area from the keyboard – normally by the user 
typing space or punctuation after the word. Table 1 shows 
the average serious and minor errors per sentence. 
Although mean error rates were higher for injected 
conditions, neither the mean increase in serious nor minor 
errors was significant (Serious: Normal Z=-0.86, p=0.390; 
Highlighting Z=-1.24, p=0.215. Minor: Normal Z=-0.18, 
p=0.857; Highlighting Z=-0.68, p=0.497, Wilcoxon). 
Likewise the highlight keyboard did appear to result in 
more minor errors but this was also not significant. 

Suggestion bar usage 
Participants preferred to do most of their input character-
by-character and made little use of the suggestion bar 
with no difference between conditions (Normal Z=-1.33, 
p=0.184; Highlighting Z=-0.80, p=0.424, Wilcoxon). 
Table 1 shows the average number of times a suggestion 
was picked per sentence. An interesting observation, 
however, is that almost all usage of the suggestion bar 
came from our older participants (over 50s), while 
younger participants almost completely ignored it. 

Subjective Feedback 
Analysis of NASA TLX data showed no significant 
differences for Mental, Physical, Temporal or 
Performance metrics. However, in the case of Overall 
Effort and Frustration levels the injection did lead to a 
difference between the keyboard conditions: the normal 
keyboard showed no significant difference with and 
without injection, while the highlighting keyboard 
showed significantly higher effort (Z=-2.80, p=0.005, 
Wilcoxon) and frustration (Z=-2.86, p=0.004, Wilcoxon).  

 C1 
Norm 

-Inject 

C2 
Norm 

+Inject 

C3 
High 

-Inject 

C4 
High 

+Inject 

Mental 10.0 9.0 7.5 7.5 

Physical 6.0 6.0 7.0 6.5 

Temporal 10.0 10.0 10.0 10.0 

Performance 8.0 9.5 7.0 9.0 

Effort 11.5 13.5 10.0 12.5 

Frustration 10.0 11.0 9.0 12.0 

Table 2 NASA TLX Median Scores 

In a post-study questionnaire participants reported that 
they did indeed notice injections as they happened (in 
response to “I always noticed the injected errors as I was 
typing” users answered with a median of 4 [agree] on a 5 
point Likert scale). This is backed by self-reporting of 
more careful behaviour while typing (median 4 [agree] to 
both “Injected errors made me type more carefully” and 
“The injected errors changed how I typed”). However 

participants also supported the “realism” of the mistakes 
being injected into the text (“The injected errors were 
similar to errors I make when typing quickly on my 
phone” and “The injected errors were similar to errors I 
make when typing on my phone while on the move” both 
median 4). Where they disagreed was with the frequency 
of injected error appearance, they thought that this differs 
from what they would observe in real life (median 2 
[disagree] to both “The frequency of injected errors was 
similar to the frequency of errors I make while typing 
quickly” and “The frequency of injected errors was 
similar to the frequency of errors I make while typing on 
the move”). In discussion it was clear they felt we were 
injecting somewhat more, but not excessively more, 
errors.  

Discussion and Limitations 
Taken together the results on increased backspace usage, 
longer inter-key times and no significant difference in 
error insertion strongly indicates that users simply slowed 
their typing to correct injections as they typed rather than 
correcting words after completion.  

Although there’s some evidence of increased errors by 
some users, overall users simply slowed down to keep 
entry accurately character-by-character. As a result our 
error supporting mechanisms were still not being 
exercised and we were not noticeably increasing error 
rates. A pattern is emerging that in our lab studies users 
react to test situations by typing as slowly as necessary to 
maintain very high typing quality.  

STUDY TWO: WORD BY WORD INJECTED ERRORS  
Character-by-character injection succeeded in introducing 
errors that were, overall, considered to be realistic by 
users. However, the method had too strong an effect on 
typing behaviour with users slowing down typing 
considerably to compensate. As an alternative we 
investigated injecting errors after each word was 
completed rather than on a key-by-key basis and 
introduced version 2 of our injected errors algorithm. This 
variant is similar to auto-correction replacing words with 
unintended words when the word is completed, except in 
our case the resulting word is unlikely to be a valid 
dictionary word. 

Following the results of study 1, we amended the 
algorithm so that it would only effect error injections after 
the user had finished typing in a word. Because the 
algorithm is agnostic to the length of the input word, there 
are possibilities (although small) that more than one 
characters in the same word may be replaced, resulting in 
final input that seems unlikely (e.g. because the characters 
‘t’ and ‘r’ have a high likelihood of being replaced with 
‘y’ and ‘e’ respectively, a user may have typed in the 
word ‘try’ only to see it being replaced with ‘yey’- a level 
of error injection we felt would be excessively 
noticeable). To prevent such problems, we limit the 
number of allowed replacements within any given word w 



 

to [1, (0.25 x L(w))] where L(w) is the word length. If the 
number of replacements exceeds the replacement cap, 
then we reduce the number of replacements down to the 
upper limit by removing as many replacements as 
required in a random manner. The cap is enforced only 
after the user has finished typing a word and the errors are 
injected into the completed word, replacing the characters 
the user has already typed in. 

Given this process, we handle the deletion of characters 
during the composition of a word as follows: Say for 
example that the user typed in the word “toying” and as 
they get to the final character, and before pressing a word 
terminator such as space, full stop, comma etc., decide to 
change the word to “toyed”. Also let’s assume in this 
example that the algorithm determined that the character 
‘o’ will be replaced by a neighbouring character, e.g. ‘i’, 
and that the character ‘n’ will be replaced by ‘b’, when 
the user has finished typing. As the user starts to 
backspace, the algorithm will keep the ‘i for o’ 
substitution, as this precedes the characters that have been 
deleted, and the ‘b for n’ substitution will be discarded. 
As the user continues to type the characters following the 
sequence ‘toy-‘, the algorithm will calculate the 
replacement probabilities for any new characters being 
input. 

Study Participants and Procedure 
We recruited 20 participants (13 m, 7 f; age range: 22-33, 
mean 26.05). Again all participants were regular users of 
smartphones with touchscreen keyboards. Our aim was to 
discover whether the modified injection algorithm 
encourages participant behaviour during input and 
whether it provides more opportunities to study 
participant behaviour in handling errors during input. Our 
aim was that the injection algorithm should not 
significantly affect the core properties of participant 
behaviour during typing, but should provide more 
opportunities to investigate behaviours and strategies 
when noticing errors. To this end, we performed a second 
study using the same 2x2 design (keyboards and 
injection).  

Results 
Results are summarized in Table 3 and Figure 2.  

Speed of typing 
With regard to the WPM rate, in both keyboards 
participants exhibited a statistically significant lower 
WPM rate in the injected condition (Normal t(19)=4.813, 
p<0.001 t-test, Highlighted Z=-3.136, p=0.002 
Wilcoxon). It is noteworthy however that the difference is 
small, approximately 3-4WPM in both cases. These 
findings are in line with those of the previous experiment. 
With regard to inter-key times, we find a statistically 
significant difference only in the Normal keyboard 
(t(19)=-3.537, p=0.002, t-test), whereas in our previous 
experiment, this difference was observed in both 
keyboards. 

Errors while typing 
In Table 3, we report the average ratios of backspaces and 
suspect characters per total typed characters. We observed 
that in both keyboards, the injected condition caused 
heavier usage of the backspace key, as was expected. This 
difference was statistically significant both in the Normal 
(Z=-3.883, p<0.001, Wilcoxon) and Highlighted 
keyboards (t(18)=-3.963, p<0.001). This finding contrasts 
the results of our previous experiment, where the 
participants were able to notice injected errors as they 
occurred. We noted also that the suspect character ratio 
was statistically significant only for the Normal keyboard 
(Z=-3.360, p<0.001), compared to our previous 
experiment where this difference was statistically 
significant in both. It is interesting here to note that the 
injected conditions increased the number of backspaces 
disproportionately to the number of resulting suspect 
characters, which indicates that in the injected conditions, 
errors were spotted at places nearer the beginning of a 
word, hence requiring more backspaces to fix. 

Regarding minor and serious mistakes, Table 3 shows the 
average serious and minor errors per sentence. The 
injected condition clearly caused more to appear in both 
keyboards (Minor: Normal Z=-3.922, p<0.001, Wilcoxon, 
Highlighted: t(19)=-12.944, p<0.001, t-test, Serious: 
Normal Z=-3.469, p<0.001, Wilcoxon, Highlighted Z=-
3.433, p<0.001 Wilcoxon). This was an expected result 
from the way our algorithm was modified to behave. 

Suggestion bar usage 
In terms of suggestion picking behaviour, we did not 
discover any statistically significant differences in the 

 C1 Norm – Inject C2 – Norm + Inject C3 High – Inject C4 High + Inject 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Backspace ratio 0.06 0.03 0.13 0.03 0.08 0.03 0.13 0.04 
Suspect key ratio 0.04 0.02 0.05 0.02 0.04 0.02 0.05 0.02 

WPM 21.94 3.54 18.27 2.11 21.5 4.54 17.72 2.62 
Interkey time (ms) 421 127 505 122 457 118 484 99 
Picked suggestions 0.99 1.03 1.00 1.27 0.75 1.08 0.79 0.76 

Serious errors 0.14 0.08 0.30 0.15 0.15 0.10 0.34 0.13 
Minor errors 0.34 0.27 1.51 0.55 0.45 0.26 1.53 0.33 

Input accuracy 0.19/0.20 0.26/0.35 0.40/0.32 0.40/0.30 0.11/0.10 0.14/0.11 0.38/0.33 0.38/0.39 
Table 3: Word-by-Word Completion Injected Error Study Results Data 



 

means, for both keyboards. Table 3 shows the average 
number of times a suggestion was picked per sentence. 

Input accuracy 
Given that our algorithm successfully caused the 
emergence of significantly more serious and minor 
mistakes, we were able in this case to discover whether 
our participants were able to detect these and make the 
necessary corrections before submitting their text. Table 3 
shows the average Levenshtein distance per sentence 
(calculated by converting to lower case and trimming 
punctuation and trailing spaces) for the entire submitted 
sentence and with the last word removed (see below for 
explanation). 

In both the Normal and Highlighted keyboards, we notice 
that the differences in participants’ average Levenshtein 
string distance between submitted and requested text was 
higher with statistical significance in the injected 
conditions (Normal: Z=-2.272, p=0.023, Wilcoxon, 
Highlighted: Z=-2.850, p=0.004, Wilcoxon). This result 
shows that participants’ input accuracy suffered due to the 
injection of errors, of which a larger percentage went 
undetected during submission when the injection 
condition was enabled. Here we were somewhat 
concerned that our Highlighted keyboard’s error detection 
support mechanisms did not allow participants to detect 
the mistakes and correct them. We noted that most of the 
uncorrected mistakes occurred at the end of input, for 
participants that forgot to press the full-stop character at 
the end and immediately pressing the “submit” button. 
The session ending caused injections in the last word to 
be affected, without giving our participants a chance to 
correct the mistake. Further analysis with the removal of 
the last word from each submission led to slightly reduced 
means for average distance (Normal: Z = -1.835, p=0.066, 
Highlighted: Z= -2.388, p<0.05, Wilcoxon) with little 
effect on non-injected conditions (Figure 2e).  

Subjective Feedback 
In Study 2, the NASA TLX results (Table 4) showed that 
injection caused a higher mental demand in the Normal 
keyboard (Z=-2.472, p=0.013, Wilcoxon) but not the 
highlighted keyboard. Additionally, participants felt their 
performance was worsened during the injected condition 
with the Normal keyboard (Z=2.400, p=0.016, Wilcoxon) 
but not the Highlighted keyboard. Effort was again 
greater in the Normal keyboard with the injected 
condition (Z=-3.131, p=0.002, Wilcoxon) but not the 
Highlighted keyboard. Frustration however was greater in 
both keyboards with the injected condition (Normal: Z=-
3.731, p<0.001, Highlighted: Z=-2.490, p=0.013, 
Wilcoxon). Physical and Temporal demand did not 
exhibit any statistically significant differences due to the 
injected condition, in both keyboards. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 2. Participant behaviour in study 2. 



 

  
C1 C2 C3 C4 

Norm Norm High High 
-Inject +Inject -Inject +Inject 

Mental 10.0 9.0 8.0 9.0 
Physical 7.0 6.0 7.0 7.0 
Temporal 10.0 10.0 10.0 10.0 
Performance 9.0 10.0 7.5 9.5 
Effort 11.5 13.0 10.5 12.0 
Frustration 10.0 11.0 9.0 12.0 

Table 4: Study 2 NASA TLX Medians 

Studying participant behaviour during errors 
Given that our injection algorithm caused the appearance 
of more serious and minor mistakes in both keyboards, 
our next goal was to determine whether this provides 
more opportunities to observe participant behaviour 
strategies in correcting mistakes when they are spotted. 
One such metric of correction strategies is to look at the 
backspacing sequences employed by participants. We 
note here that our keyboard does not support a “long-
press” of the backspace key (which in some keyboards 
results in deletion of an entire word), hence each 
backspace press (even long ones) deletes exactly one 
character. By looking at the instances of consecutive 
backspace presses and the length of these sequences, we 
observe that in both keyboards, the injected condition 
causes a higher frequency of longer backspace sequences. 
In the non-injected conditions, 90% of all backspacing 
sequences are up to 3 (Normal) or 4 (Highlighted) 
backspaces long. In contrast, in injection conditions, the 
90% cut-off is at 6 consecutive backspaces, indicating 
clearly that our algorithm provides more opportunities to 
examine participant behaviour when mistakes are detected 
only after a word has been typed, or when they are early 
into a relatively long word (e.g. forcing participants to 
make a choice on whether to consecutively backspace, 
hence possibly missing their target, or to attempt to move 
the cursor at or near the position of the mistake).  

 
Figure 3. Frequency of employing the sequential 

backspacing correction strategy 

 
Figure 4. Inter-key times in single and consecutive 

backspaces 

By electing to move the cursor to a previous position in 
the text instead of consecutively backspacing, a user 
postpones interaction with the keyboard keys in order to 
have to press a small number of backspaces (one or two, 
if they have accurately positioned the cursor near the 
mistake). Effects of such behaviour are noticeable in our 
results, if we consider the average inter-key time in each 
sequence of backspaces. We can clearly see that single 
backspace sequences exhibit a longer average inter-key 
time, which drops dramatically for double, and then 
continues to drop for multiple consecutive backspaces. 
We can see that in the injected conditions, these inter-key 
times (particularly for 1 and 2 backspaces) are longer, 
showing that participants took longer to move the cursor 
(i.e. the spotted mistake was earlier in the text) than in 
non-injected conditions, hence the injection algorithm 
affords researchers opportunities to study the movement 
of cursors to detect mistakes as a strategy.  

We notice also that our algorithm provides ample 
opportunity to study behaviour during extreme 
backspacing that spans multiple words (e.g. 51 and 62 
cases of 7-12 consecutive backspaces in the injected 
condition Normal & Highlight keyboards respectively, 
compared to just 12 and 22 in the non-injected condition). 

CONCLUSION  
In previous studies we noticed that participants in a lab 
environment were especially careful during input, 
correcting mistakes as they occurred and checking each 
letter as it was being type. This provided very little 
opportunity to study their behaviour in correcting 
mistakes that had gone unnoticed, made it difficult to try 
out novel mechanisms for assisting in the spotting of 
mistakes as they occur during input. In contrast with 
participants’ expressed concerns over undetected errors in 
text, particularly when sent to another person, along with 
the commonplace understanding of how embarrassing 
auto-correct can be when it replaces words out of context 
to the intended message, we were unable to reproduce 
enough behaviour of this type in the constraints of lab 
studies without involving either a large number of 



 

participants, or assigning participants a significantly 
larger workload in terms of input tasks. In Study 1, we 
attempted to artificially overcome participants’ careful 
behaviour by injecting artificial but realistic errors in their 
input, as it took place. Despite overall feeling that the 
errors were representative, taken together the results on 
increased backspace usage, longer inter-key times and no 
significant difference in error insertion strongly indicates 
that users simply slowed their typing to correct injections 
as they typed rather than correcting words after 
completion.  

In contrast, Study 2 was much more successful in 
bringing out a wider diversity of error management 
strategies by users. We saw during the use of both 
keyboards clear evidence of different patterns during 
backspace usage, including an increased frequency of 
longer backspace sequences and evidence of strategic 
decisions on positioning the cursor near a mistake, rather 
than just backspacing. Furthermore, participants did not 
perceive that injected errors caused a greater temporal 
demand in either case. 

As stated in the introduction, the purpose of this paper 
was not to examine whether the highlighting method 
offers any advantages in detecting and fixing errors, 
compared to a plain QWERTY keyboard. Our purpose 
was to test whether the injected algorithm can provide 
more opportunities for researchers to study error 
management behaviour in a lab setting, without requiring 
great numbers of participants or burdening the 
participants with an excessive number of tasks to 
complete. To this end we feel that our algorithm has 
shown promise in enticing a greater frequency and 
diversity of error correction behaviours, which deserve 
further research. As such we recommend use of word-by-
word error injection in studies that wish to investigate 
user correction behaviour or support mechanisms. 

We have noticed in our experiments that participants 
frequently “context-switch”, i.e. shift the focus of their 
attention between the keyboard and the input area, to 
check for mistakes. The design of multimodal feedback 
cues to remove the need for such frequent context-
switches may yield performance improvements that can 
be tested using lab tasks and our algorithm. The algorithm 
itself can be improved to position the injected errors 
further from the current focus of the user’s attention. For 
example, instead of modifying the word that has just been 
composed, the algorithm could be easily made to modify 
characters in the previous two or three words, hence 
making it more difficult for the user to immediately notice 
any changes But at a further cost in realism. A hybrid 
approach of infrequently injecting character-by-character 
errors along with word-by-word errors may also prove 
productive and be more realistic. Other improvements 
may include a learning, adaptive strategy which will be 
trained by each individual user’s own mistakes and thus 

produce errors which are more realistic to each individual 
user. Our suspect character heuristic would permit in-the-
wild collection of data in a manner that does not require 
recording of full text-entry and thus could avoid some 
privacy concerns. 

At this time we are continuing our research and hope to 
be able to report on the design of new feedback and 
support mechanisms for mobile text entry, as well as 
modifications and improvements to our method.  

The source code for our keyboard and all data described 
in this paper are at <anonymised-URL> . 
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