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ABSTRACT

During mobile text entry, users must shift their gaze from the key-
board to the entry area to check for errors. Many of these shifts are
wasteful, since users have not committed any errors in the input
stream. This waste might be reduced if, for example, on-keyboard
visual feedback about the presence or absence of errors could be
provided to users during text entry. However, constant feedback
might result in visual clutter disruptive to the input process. We
aim to address the challenge of predicting opportune moments
(breakpoints) in user’s attention to the keyboard to deliver such
feedback, utilizing open gaze data collected from 30 participants
while typing a) using the index finger of user’s dominant hand and
b) using both thumbs. We find that our model achieves promis-
ing results in predicting attention breakpoints under both typing
conditions and, particularly, during text entry with both thumbs.
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1 INTRODUCTION

Novel prototypes for mobile text entry are typically evaluated in
laboratory settings, using transcription tasks, which require par-
ticipants to quickly and accurately copy a set of phrases presented
to them during the experiment. In these environments, it has been
often noted that participants leave few uncorrected mistakes [4, 19].
For this reason, the Total Error Rate metric has been recommended
as the only measure that captures both corrected and uncorrected
errors, as well as the effort expended to make the necessary correc-
tions [5]. One plausible explanation for the low uncorrected error
rate is that users will frequently interrupt the process of selecting
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and entering characters (typing) to observe the text entered so far,
therefore interleaving typing with error-checking activity. This be-
haviour inherits the problems associated with task interruptions. In
related research, the interleaving of tasks has been found to require
time to mentally prepare to assume the next task, as well as time
to mentally prepare to resume the preceding task, which includes a
high cognitive load as the state of the paused task has to be recalled
into working memory [12].

Based on this information, it is natural to wonder how the inter-
leaving of tasks associated with text entry (typing and checking)
impacts user text entry speed, as many of the performed checks
might actually be unnecessary - the user has indeed typed the in-
tended letter sequence, but nevertheless still feels compelled to
check, because mobile text entry is known to be difficult and unre-
liable. If it were indeed possible to somehow inform the user, while
they are engaged in the typing task, that no errors have occurred,
then this would alleviate the need to disrupt the typing task in
order to assume the checking task, leading to less frequent con-
text switches and therefore improved text entry performance. To
provide this type of positive and reassuring feedback to users, a
prototype design might imagine some form of persistent, always-on
feedback in the user’s field of vision (or using another modality).
However, the danger in such an approach might be that the user
would substitute the checking task, with a new checking task, i.e.
often checking the feedback mechanism. Additionally, if the visual
feedback mechanism is animated or uses vivid re-colouring to draw
users’ attention to it, it would succeed in redirecting users’ attention
to it, but frequent redirection would increase cognitive load and be
just as (if not more) disruptive to the input process [9]. Instead, it
might be better to provide users with reassurance periodically, e.g.
every 2-3 characters, or even better, at opportune moments. Such
moments might be, for example, at the end of composing a word.
It would be even better if the feedback system could accurately
identify or predict contexts in which it is likely that a user might
feel the need to disrupt the typing task to perform some checking,
and provide the feedback at that exact time.

We present an investigation on the feasibility of making such
predictions, using open data from a mobile text entry experiment
[13], involving gaze tracking and typing data. We demonstrate that
it is possible to predict whether a user will engage in a checking
task after entering a given character and these findings open up
interesting pathways for future research which might improve
support for text entry with mobile soft keyboards.
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2 BACKGROUND

2.1 User behaviour during erroneous mobile
text entry

Text entry is a complex process that consists of three main user-
performed sub-tasks. First, some text has to be determined in the
user’s mind as the desired text to be entered. Fixing errors during
mobile text entry is time and effort-intensive [6]. As such, users will
slow down their rate of entry (writing speed) to avoid making more
mistakes. Less is known about the strategies that users adopt to
detect and fix errors. An analysis of typing data from a small cohort
of users during a field study, ascertained that users might prefer to
fix errors using backspaces, or short backspace sequences, rather
than position the cursor prior to deletions [16]. This hints at users
following an "on-the-spot" detection and correction strategy, which
requires frequent shifting of attention between the keyboard and
text entry area. A study of mobile text entry in lab settings, using
gaze-tracking alongside other data capture methods, showed that
there indeed exists a frequent allocation of attention between the
keyboard and text entry area, during transcription tasks [13]. In the
same work, authors demonstrated that error-checking is present
even in the typing of phrases where users made no actual errors
(approximately on average 2.6 gaze shifts to the text entry area, per
phrase). Later work, using the same data released by [13], suggested
that this number might actually be an underestimation of the actual
amount of attention shifts taking place [15]. One disadvantage of
the last two studies is that in the transcription task setting used
in the experiment, the text entry area was immediately adjacent
to the screen location where the stimulus phrase was displayed to
users. Therefore, it isn’t possible to discern between participant
attention paid to the text entered, or the stimulus phrase (e.g. when
the user forgot what to type next). Another recent gaze-tracking
mobile text entry study which clearly distinguished between the
areas of interest in the transcription task user interface, found that
attention to the text entry area alone accounts for as much as 25%
of the user’s fixations during lab transcription tasks [18].

2.2 Task switching in text entry

In the context of text entry, it is acknowledged that the process
of typing is a complex cognitive process, which relies heavily on
memory (e.g. to retrieve appropriate words to form sequences) and
fine motor control [10]. We can therefore consider text entry as
consistent of two parallel, or interleaved sub-tasks: determining
and planning the text to enter, and executing the appropriate motor
functions to enter it. Recent literature views typing as a hierarchical
control process [20] and it is argued that the digital equivalent of
expression through writing (i.e. typing) is cognitively more chal-
lenging than its traditional counterpart (handwriting) [8].

There is, however, a third, less explicitly discussed sub-task in
text entry, which is the need to check the text that has been entered
for correctness. Failures may occur due to errors in the determining
and planning sub-task (e.g. realizing that a better synonym for
the currently composed word could have been used), or in the
execution sub-task (e.g. inadvertently striking a proximal key to the
intended one, resulting in a substitution error). Therefore, while
checking the entered text is an important part of text entry, the
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checking action significantly interrupts the flow of the writing
process. Mobile text entry particularly suffers from such disruptions
to the writing process, primarily because touchscreens do not afford
users the opportunities to touch-type (thus motor control cannot be
fully automated or perfected), and also because typing in the wild
involves unpredictable disruptions due to events in the external
environment (e.g. movement, noise and so forth). Further, attempts
to support text entry through methods like autocorrect, frequently
result in inadvertent input which needs to be corrected by the
user [2, 7]. These limitations make mobile text entry an inherently
uncertain process, and therefore require that the task of writing is
frequently interrupted by the task of checking.

A long strand of research investigating the impact of attention
disruption and task switching, especially when working with com-
puters, has found that interruptions are detrimental to task perfor-
mance, mental state and affect, and ultimately performance. A rea-
sonable overview of related literature on attention and disruption is
provided in [12]. On the other hand, research on another source of
disruptions in mobile use, namely notifications, has shown the bene-
fit of delivering disruptive events at opportune moments, which may
be predicted based on a range of contextual cues [22]. As discussed,
typing is a mentally challenging task, and thus interruptions to it,
according to Wicken’s attention theory, are prone to be costlier
since resumption of the task will be significantly more difficult
[24]. Without support, users must continuously mentally balance
the cost of disrupting the flow of their writing process to check
for errors, against the cost of fixing any errors, which becomes
greater if they are not immediately spotted. This decision-making
process can therefore result in unnecessary (wasted) instances of
checking. Improved support might enhance users’ text entry speed
and reduce frustration.

2.3 Summary

We hypothesized that a support mechanism to reduce unnecessary
checking behaviour might provide users with some cues to con-
tinue writing (reassurance) to prevent shifts of focus away from the
keyboard. Previous literature has attempted to support error aware-
ness by providing visual cues within the text entered by the user,
or on the keyboard itself, but only after a word has been completed
[1, 17]. As explained in the preceding sections, ideally, these cues
should be delivered at opportune moments, namely those when the
user is about to decide on whether to look up or down. The goal
of our paper is therefore to examine whether a prediction of these
decision points is possible, using a machine learning method that
should be lightweight and easy to integrate into the source code of
a mobile keyboard.

3 MOTIVATION, MATERIALS AND METHOD
3.1 Motivation and Materials

The aim of this work was to develop a model for predicting the
breakpoints in users’ attention away from the keyboard, during text
entry on mobile devices. To achieve that, gaze and touch data would
need to be utilized. If such model could be developed, it would be
possible to provide visual feedback about the presence or absence
of errors to users, thus possibly decreasing the amount of users’
gaze shifts and increasing their input efficiency. To illustrate the
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potential applications of the proposed model, imagine a user typing
on a mobile device. Before an imminent gaze shift, as predicted by
the model, multimodal feedback can be presented to the user in
order to support the decision on whether to disrupt the flow of the
input process, in order to check for errors. For example, keyboard
graphical components could change colour according to the input
stream state (e.g. green for no errors, red for errors detected), or
a combination of haptic and audio feedback (e.g. short tones or
vibrations) could indicate if there is a real need to disrupt the input
process flow to check for errors. This concept has been demon-
strated in [17] but in that paper, the feedback was continuously
provided therefore potentially distracting the user in circumstances
when they were not intending to make a decision on whether to
disrupt their flow.

Building on previous work presented in [15], we utilized the
open datasets released with Jiang et al’s [13] paper to build the
proposed predictive model. Gaze and touch data were collected
while typing a) using the index finger of user’s dominant hand and
b) using both thumbs. As stated in Jiang et al’s [13] paper, 30 users
participated in the experiment, out of which 27 were right-handed.
Each user conducted 20 unique trials per typing condition. For a
more detailed description of the data collection process, readers
can consult the original paper by Jiang et al. [13].

The gaze and typing datasets were obtained following the link
provided in Jiang et al’s paper [13] and the processing scripts via
the GitHub repository provided by [15]. All data was analysed using
a Python 3.10.2 environment, where the necessary modules for data
analysis and machine learning (e.g. Pandas 1.4.2, Scikit-learn 1.1.1)
have been installed.

We used the data related to both typing conditions. For one-
finger typing, 15645 entries of touch data and 153860 entries of gaze
data were recorded, while for two-thumbs typing there were 16843
entries and 121847 entries respectively.

As discovered in [15], the openly available datasets for the one-
finger typing condition had not been cleaned or corrected (e.g. miss-
ing gaze data, invalid sentence ids, negative values in timestamp
fields). The same observations emerged in the data collected during
two-thumbs typing. We applied the pre-processing scripts provided
by [15] to rectify erroneous values. Following pre-processing, the
remaining data entries were, for one-finger typing, 13809 entries of
touch data and 139179 entries of gaze data, while for two-thumbs
typing, the sizes were 14793 and 111632 entries respectively.

3.2 Procedure

3.2.1 Upper and lower gaze labelling. In order to proceed with
the extraction of the features to be used for training the predic-
tive model, it is necessary to categorize the gaze data records into
records concerning gazes at the display area of the input text (up-
per part of mobile), and gazes at the keyboard area (lower part of
mobile). To achieve this, we follow the approaches for gaze shift
detection provided in [15]. In this work, the author proposes two
different approaches to gaze shift detection: the first method is
based on a statically defined threshold that divides the screen into
two parts - the upper (text entry area) and the lower (keyboard
area) part. The second method adopts a more dynamic technique,
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relying on clustering algorithms to detect the change of the user’s
gaze position.

Applying those algorithms to the data collected during one-
finger typing, 1993 gaze shifts were detected using the threshold-
based method and 2719 gaze shifts using the cluster-based method.
Likewise, during two-thumbs typing, 1637 gaze shifts were detected
using the threshold-based method and 2321 gaze shifts using the
cluster-based method.

To test which approach best approximated the true number of
gaze shifts, we manually checked the total amount of gaze shifts for
6 of the 30 unique participants. Comparing the results of the two al-
gorithms for these users, we found that the cluster-based algorithm
approximated the true number better than the threshold-based al-
gorithm, which supports the claim in [15]. Therefore, to proceed
with the training of the predictive model we chose to exploit the
labelling of the records into upper and lower gazes, as obtained by
applying the cluster-based gaze shift detection algorithm.

3.2.2  Feature extraction. Our aim is to predict whether the next
gaze event will be in the keyboard area (downwards gaze) or out-
side it (upwards gaze). To extract the features that will be used to
train the predictive model, we processed the gaze data in combi-
nation with the corresponding keystroke data. Going through the
gaze dataset on a per-user and per-trial basis, we decided upon
the following features that might provide information about an
imminent gaze shift. These features represent our attempt to model
the likelihood of an error having occurred since the last check, and
the cost of fixing an error in terms of corrective actions, but also
wasted actions, which the user has to balance against speed gains
accrued from not pausing the typing flow to check for errors.

o The last character that has been pressed, since some charac-
ters may have special meaning (e.g. word separators, phrase
terminators or frequently mistyped or omitted characters);

e The number of characters typed since the last time space
was pressed, since the longer a user types after beginning a
new word, the higher the likelihood of errors;

e The number of lower gaze points that have elapsed since the
last time an upper gaze occurred, since the more intently a
user has focused on the keyboard the more likely it is that
they would want to check their input;

e The time elapsed from the last upper gaze to the current
gaze event, since the more time a user has focused on the
keyboard the more likely it is that they would want to check
what they’ve typed, and;

e The number of characters typed since the last upper gaze,
since the more motoric effort a user has expended for typing,
the more likely it is that they would want to check what
they’ve typed.

To illustrate, imagine our intended classification target is the
gaze event marked by a red circle in Fig. 1. This figure shows the
vertical coordinates of gazes (grey dots) and those of typing events
(red dots), along a timeline. The blue line shows the upper vertical
coordinate limit of the keyboard area. The red dotted line is the
midpoint between the top of the device screen and the start of
the keyboard area. According to our feature descriptions, we can
determine the related values. The last character pressed is ’S’. The
number of lower gaze points elapsed since the last upper gaze is 6.
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The time elapsed since the last upper gaze event is approximately
445ms. Finally, the number of characters typed since the last upper
gaze event is 3 (space, ’s’,’s’).

To extract these features, for each selected trial, we considered
only those gaze events that have been recorded at times when the
user had already started typing, i.e., had a “trialtime” value greater
than or equal to the trialtime value of the first character press and
less than the trialtime value of the last character press. Furthermore,
if no cluster of upper gazes had preceded, i.e., at least one upper
gaze event had not been recorded, the features associated with the
upper gazes were given a default NaN value and were not taken into
account for training the predictive model. Finally, we also excluded
from the training process the cases of records that corresponded to
consecutive upper gazes, during which no typing event has taken
place. The resulting datasets were imbalanced.

Specifically, for the one-finger typing condition, 69134 (95.4%)
gaze events were labeled as a lower gaze and 3371 (4.6%) gaze events
as an upper gaze. For the two-thumbs typing condition, 41777
(89.7%) gaze events were labeled as a lower gaze and 4786 (10.3%)
gaze events as an upper gaze. We note that checking behaviour is
more prominent in the two-thumbs typing condition.

3.2.3 Model training. As shown, there are exactly two classes in
the available data. Hence, we chose to use Support Vector Machine
(SVM) for the development of our model, as it yields good results
in binary classification problems. SVMs can run with good perfor-
mance in terms of inference time and low power consumption on
mobile devices [21]. For these reasons, we avoided a more complex
deep neural network approach, which has been shown to take up
to several seconds to provide inference [11].

For each typing condition an SVM was trained. Two approaches
were followed during training and testing the models. Firstly, we
adopted a k-fold cross validation approach (k = 10) to repeatedly
train and test the model on randomly selected data from all users.
This equates to a process where the model is trained on data from
all users, and then tested for performance on instances belonging
to more than one user. Considering a single user, this approach
equates to a model that has been trained with some data from the
user themselves, as well as data coming from other users. Second,
we adopted a Leave-One-Person-Out cross validation approach. In
this approach, we use data from 29 participants to train the model
and test performance on the one remaining participant, cycling
the process through all participants. This approach represents the
starting user problem and assesses the model performance if the
model knows nothing about the individual on whom it is about to
be tested.

4 RESULTS
4.1 K-fold Cross Validation

As shown in Table 1, model performance is surprisingly good across
all metrics. Due to the aforementioned class imbalance, we pay
particular attention to the macro F1-score, especially since pre-
dicting correctly either label for the next gaze (on-keyboard or
off-keyboard) is equally important. However, we present results
for weighted metrics, as well as a range of related metrics, includ-
ing precision, recall, accuracy and AUROC. Macro-F1 score for
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one-finger typing has a mean of x = 0.823(c = 0.012), while
this is slightly improved in two-thumbs typing with a mean of
% = 0.892(o = 0.007). On the other hand, macro recall is consid-
erably lower in one-finger typing (X = 0.748, o = 0.013) compared
to two-thumbs typing (¥ = 0.856,0 = 0.012). In general, across
metrics, the model exhibits improved performance in two-thumbs
typing, which could be caused by the faster text entry speed and
corrected error rate noted in the dataset paper [13]. We posit that
events that may precede a gaze shift might be better differentiated
in two-thumbs typing. For example, a pause in typing is more likely
to indicate a pause in the input stream production in two-thumbs
typing, whereas in one-finger typing, a pause may also be caused
by reflection time, or time taken to locate and select a distant or
not frequently used character on the keyboard.

4.2 Leave-One-Person-Out

Continuing to the second approach, model performance remains
good, as shown in Table 2. Again, we present more related metrics
in addition to the results for the macro F1-score. Macro-F1 score
for one-finger typing has a mean of x = 0.801(c = 0.077), while
this is slightly improved in two-thumbs typing with a mean of x =
0.876(0 = 0.063). On the other hand, macro recall is considerably
lower in one-finger typing (¥ = 0.734,0 = 0.079) compared to
two-thumbs typing (¥ = 0.842,0 = 0.072). Across metrics, the
model exhibits improved performance in two-thumbs typing, which
corroborates the results of the first training approach. For this
approach, we also show the ROC curves in Fig. 2. We observe that
the results are, for all users, better than random, but for some users,
the features and model built by them seem to work better than
for others. This variability is more obvious in one-finger typing,
while in the two-thumbs typing condition the ROC curves are more
closely converged.

5 DISCUSSION

Building on previous work by [13, 15], we found that the prediction
of breakpoints in users’ attention utilizing touch and gaze data dur-
ing text entry can be approximated with encouraging results by our
proposed model. Usefully, the model seems to work well even in the
case where no behavioural information is known about a particular
user (Leave-One-Out). This fact might suggest that the cohort used
in [13] exhibits very uniform behaviour, hence it is possible for
the model to perform well even for a completely unknown user.
However, the dispersion of ROC curves seems to negate such as-
sumption. We note also that ROC curves are more dispersed in the
one-finger typing condition and that model performance is overall
better in the two-thumbs typing condition. We aren’t certain why
this phenomenon emerges, but we can hypothesise that given the
age and profile characteristics of the cohort in [13], as well as the
WPM and corrected error rates in that experiment, the participants
might be more familiar with two-thumbs typing and display more
consistent and thus predictable behaviour in this condition, com-
pared to more hesitant, unfamiliar or otherwise non-predictable
behaviour in one-finger typing.

In this paper, we selected SVM as a classifier that could be inte-
grated in a mobile keyboard, as literature supports its suitability for
binary classification, speed of inference on mobile devices, and low
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User 126, block: 1, phrase 16: olen lahes sanaton
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Figure 1: Timeline of typing and gaze events for a specific user.
Table 1: Metrics from 10-fold CV with One-finger and Two-thumbs typing
One-finger typing Two-thumbs typing
macro weighted macro weighted

x o 95%CI x o 95%CI x o 95%CI x o) 95%CI
precision 0.98 | 0.007 | 0.004 | 0.976 | 0.002 | 0.001 0.94 | 0.008 | 0.005 | 0.963 | 0.002 | 0.001
recall 0.748 | 0.013 | 0.008 | 0.976 | 0.001 | 0.001 | 0.856 | 0.012 | 0.007 | 0.964 | 0.002 | 0.001
f1-score 0.823 | 0.012 | 0.008 | 0.972 | 0.002 | 0.001 | 0.892 | 0.007 | 0.004 | 0.962 | 0.002 | 0.001

x o 95%CI x o 95%CI

accuracy 0.976 0.001 0.001 0.964 0.002 0.001

roc_auc 0.825 0.023 0.014 0.879 0.014 0.009

balanced_accuracy 0.748 0.013 0.008 0.856 0.012 0.007

Table 2: Metrics from Leave-One-Person-Out with One-finger and Two-thumbs typing

One-finger typing Two-thumbs typing
macro weighted macro weighted

x o 95%CI x o 95%CI x o 95%CI x o 95%CI
precision | 0.975 | 0.029 0.01 0.974 | 0.014 | 0.005 | 0.927 | 0.056 0.02 0.961 | 0.019 | 0.007
recall 0.734 | 0.079 | 0.028 | 0.974 | 0.014 | 0.005 | 0.842 | 0.072 | 0.026 | 0.962 | 0.019 | 0.007
f1-score | 0.801 | 0.077 | 0.028 | 0.969 | 0.016 | 0.006 | 0.876 | 0.063 | 0.023 0.96 | 0.018 | 0.007

x o 95%CI x o 95%CI

accuracy 0.974 0.014 0.005 0.962 0.019 0.007

roc_auc 0.829 0.069 0.025 0.875 0.07 0.025

power consumption. One main limitation of our study is the need
for testing different machine learning techniques and comparing
their results, regarding their ability to predicting the imminent
gaze shifts during text entry. Deep learning architectures such as
recurrent neural networks might provide better results, however
they would likely require much more data than we have available,
and real-time inference performance on the mobile environment
would need to be examined.

A further limitation of our study is that we depend on data from
an external source and a limited population sample, which was
collected in a carefully controlled laboratory environment and not

in-the-wild. Therefore, can only generalise about our findings with
reservation. Unfortunately, data like this, combining both typing
and gaze events, is difficult to find and even collect. We plan to con-
duct further investigation, to validate the model in real-life settings.
Additionally, the proposed model, and models that will result from
training different machine learning algorithms, should be evaluated
in settings where transcription tasks are not the selected evalua-
tion method or in settings where the text entry area is positioned
close to the keyboard area, in contrast with the experiment in [13].
Moreover, to assess its performance, we are considering comparing
our ML-derived model to the model proposed by Jokinen et al. [14],



MobileHCI *23 Companion, September 26-29, 2023, Athens, Greece

Receiver operating characteristic

1.0+ E
’7'
”
”~
-’
4
”
0.8 1 Pt
f/
o] Pid
] -
o
S 0.6 i
2 i
= ’
@ ’
-4 e
$ 0.4 -
= i
”
Ll
,
”
4 ,’
0.2 ’,
-
Pl
e == Mean model (area = 0.500)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(a) One-finger typing

Receiver operating characteristic

1.0 - =
”
”
td
”’
s
-
0.8 1 -
t/
o] e
el -
o
5 0.6 -7
2 i
= s
@ ’
£ e
$ 0.4+ -
= -
P
L
,
”
4 ,’
0.2 ’,
”
e
e —=—Mean model (area = 0.500)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(b) Two-thumbs typing

Figure 2: ROC curves for all participants using Leave-One-
Person-Out validation.

which treats the text entry process as a supervisory control problem
to explain gaze shifts.

Finally, the work presented here rests on the assumption that
the mobile device is somehow able to track users’ gazes therefore
collecting the necessary information for some of our features. Al-
though gaze tracking on smartphones without external hardware
has been recently demonstrated to be feasible with reasonable ac-
curacy [3, 23], this has only been done in a laboratory setting and
it remains unknown whether such techniques might work as well
as wearable eye-trackers in real life settings. We would like to ex-
amine different models which do not rely on eye-tracking ability,
therefore exploiting only data which can be reliably extracted from
the device, such as touch and device positional data.
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6 CONCLUSION

In this paper, we introduced a predictive model yielding encourag-
ing results in predicting when a user will shift their attention away
from the mobile keyboard area during text entry. Our findings can
facilitate further research in integrating lightweight machine learn-
ing models into the source code of a mobile keyboard, aiming to
improving users’ efficiency. Incorporating such models in the code
of mobile keyboards to provide visual feedback to users, about the
correctness of the input text, and encouraging the user to continue,
rather than disrupt the flow of the text composition process, could
possibly aid the improvement of users’ typing efficiency.
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