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ABSTRACT 
A multitude of social media APIs from popular services such as 
Facebook, Twitter and Google, allow programmers access to user 
generated data that is pertinent to physical venues represented 
within these services. In our paper, we attempt to address the 
issue of automatically matching venue representations from 
these diverse APIs, in order to obtain a more complete 
representation of user cyber-physical interaction with these 
venues. We present our work comparing a neural network 
approach against Nearest Point and Longest Common Substring 
algorithms. 
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1 Introduction 
Due to the utility and popularity of social networks (SNs), users 
generate large volumes of data daily, much of which is geo-
tagged either using precise coordinates, or by co-tagging a 
spatially positioned venue that is already represented in the SN, 
leading to the concept of a Location Based SN (LBSN). In a sense, 
it can be said that users can interact with their physical 
environment using LBSNs, indicating their presence or appraisal 
of a venue in a spatiotemporal context [1, 2]. A common activity 
that includes such cyber-physical interaction is the “check-in”, 
i.e. the explicit action of indicating current presence in a venue, 
the “like” or “rating” of a venue, as well as leaving a “tip” for 
other users, or “tagging” a photo, status or other update with the 
venue. For researchers, this data is valuable as it can be used to 
capture the urban dynamics of an area of interest or be used for 
other analyses. 

As users are often registered with and employ various SNs, it 
is difficult to obtain a complete picture of their cyber-physical 
interactions, since venue representations amongst LBSN services 
are not in any way linked. A further problem is that because 
venue representations are often generated by the users 
themselves and are not moderated, there is often great 
discrepancy between the representation of a venue amongst 
diverse LBSNs. For example, the same venue might be 
represented with different coordinates with a varying degree of 
discrepancy (slight inaccuracies in the location sensor of the 
device used to create the venue profile, or large inaccuracies 
because a venue has moved to new premises and this change is 
not reflected across all networks). The same applies to venue 
names, which may vary because of different spellings (e.g. 
“Aróe” and “Aroe”), omissions of common words (e.g. “Tag Café” 
and “Tag”) or the re-naming of a business as it changes 
ownership over time. Venues that are closed are also a source of 
clutter. Finally, issues arise due to the multiple representations of 
the same venue in a LBSN. To address some of these issues, 
researchers have proposed systems that use humans as an 
information source. For example, in [3], a system is proposed 
that allows social network users to ask other users questions 
about venues, leveraging from the expertise or knowledge of 
others. However, their analysis shows that there are issues that 
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relate to response time for the questions posed, as approximately 
75% of questions were responded after 10 minutes. Additionally, 
approximately 65% of questions received up to 3 responses only 
and there was no way for the user to rate the response received 
(some responses were also completely useless, e.g. “I don’t 
know”). This impacts on the trustworthiness of such an 
approach. Another, more automated approach that combines 
data gathered automatically from social networks (Twitter and 
Foursquare) and considers the “expertise” of individual users, 
based on their geo-located tweets and venue check-ins, is 
presented in [4]. Venues for a particular goal (e.g. find a good 
seafood restaurant) are thus presented as suggestions to the user 
after matching the query with relevant venues. The researchers’ 
analysis showed that compared to user-review based, expert-
based and hybrid schemes, this approach offers very good results 
without the cost of paying human reviewers. However, a deficit 
of this approach is that it effectively augments the current 
Foursquare system, adding a layer of tweets and tags pertinent 
to the venues only represented therein. Hence it doesn’t really 
address the issue of matching venues represented in multiple 
SNs. Other approaches, aiming to offer better venue suggestions 
by analyzing not just the check-in statistics but also user 
profiles, are offered by [5], who augment the Gowalla dataset 
with calculated additional metrics to improve suggestions. A 
good survey of venue recommendation methods is provided by 
Rosi et al. [6], in which it is apparent that techniques for 
automatically matching venues from multiple SN datasets are 
not present in literature. To addess this shortcoming, Celino et 
al. [7] proposed a solution to matching venues using a 
crowdsourcing approach. They presented a pervasive game 
called UrbanMatch, in which users are called upon to provide 
links between POIs represented in Flickr and OpenStreetMap. 
Clearly though this approach requires a number of active 
players, who, without incentive, could not possibly cover the 
entire globe. 

We set out to examine whether it might be possible to 
automate the process of matching venue representations across 
diverse LBSNs, in order address a limitation present in all 
current research in LBSN use, which is focused on mining data 
from single networks [8][9]. So far, research into this issue has 
been very limited. Mashhadi et al. [10] attempted a pairing of 
POIs present in OpenStreetMap and NavTeq datasets, using the 
criteria of geographic distance and Levenshtein distance of the 
POI names. They empirically derived a threshold of 100 meters 
and 0.33 for the normalised Levenshtein distance as a criterion 
with which to match POIs. They concluded that this scheme has 
a 97% accuracy but their tests were performed on a very small 
dataset of 30 POIs. Scheffler et al. [11] have used a geographical 
distance filter followed by string processing (Levenshtein 
distance) on the venue names, using a threshold of 10% to match 
venues. Comparing this approach with a Nearest Point (NP) and 
a Longest Common Substring (LCS) approach, a distinct 
advantage was found in their approach, which achieved up to 
79% accuracy, however this was on a limited subset of 50 random 
POIs from Facebook and Qype, of which 34 and 33 respectively 
were used as training data. McKenzie et al. [12] also attempted to 

match Foursquare and Yelp POIs using the venue name 
Levenshtein distance, phonetic similarity, category matching and 
geographical location in a weighted multi-attribute model. They 
obtained 97% accuracy in matching using 200 POIs from both 
services, in a dataset of verified matching POIs. This 
performance is drastically reduced when the datasets contain 
non-matching POIs, returning a high percentage of true matches 
(up to 95%) but also many false matches (up to 65%). 

2  Using Neural Networks to Match Venues 
Since the approaches previously used in literature did not 
employ a machine learning approach, we decided to implement a 
neural network-based approach and evaluate its performance 
against the NP and LCS approaches, which can be considered as 
the baseline measure for performance. We used the Tremani 
Neural Network framework1, written in PHP, in order to develop 
a solution that would be easy to run on a server environment 
and integrate with various web services. The implemented 
network is a feed forward multi-level network, using up to two 
intermediate (hidden) levels. 

2.1 Training and Test Data 
We collected a set of data from Foursquare and Facebook, as 
described in [13], for the city of Patras, Greece. We found 403 
distinct venues from Facebook and 1777 venues from Foursquare 
in the area of interest. We proceeded to manually match 240 
pairs of venues from both datasets and also create a further 240 
pairs of false matches. For each of the pairs, we calculated their 
geographic distance in meters, using the Halversine distance 
function, and also the Levenshtein distance of the venue names, 
converting Greek character in venue names to Latin, where 
necessary. A sample of this training set is shown in Tables 1 and 
2 below.  
 
Table 1: Sample matching venues from training set 
Foursquare name Facebook name Lev. 

Dist 
Geo. Dist 

(m) 
Queen @queen psila alwnia 13 14 

Avantaz Abantaz Club 
Ellinadiko 

17 48 

Abbey Kitchen Bar Abbey Cafe 10 22 

Amelie Amelie vintage cafe 13 11 

b.b.king Bb King 1 33 

bibliotheca | sala di 
studio 

Bibliotheca 16 8 

Table 1 shows some characteristic examples of the issues in 
venue matching from different social networks. On the first row, 
Foursquare displays the “common” name for a venue, while on 
Facebook, it is listed as the owner intended (“@queen”), followed 

                                                             
1  Tremani Neural Network: http://neuralnetwork.sourceforge.net/ [accessed 
20/6/2014] 
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by the name of the plaza this venue is located in (“psila alwnia”). 
The plaza name itself is a “Greeklish” (Greek written with 
English, i.e. Latin characters) rendition of the proper name 
(“ψηλά αλώνια”), where the omega (“ώ”) character is 
represented by an English lookalike letter (“w”). 
 
Table 2: Sample non-matching venues from training set 
Foursquare name Facebook name Lev. 

Dist 
Geo. Dist 

(m) 
pantelospito Plan B Club 10 1159 

Dasullio - The Bright Site 
Of City 

Moulin Rouge 27 1391 

Souvlakeri Bardot 9 613 

RF street Onisimon 8 124 

X-Treme Stores Exte Hair Design 12 895 

Vodafone Diamond Event 
Planners 

18 256 

To form an unbiased training set, we randomly chose two 
thirds of each pair category (true and false matches), resulting in 
a training set of 320 pairs. We fed the training data into a 
network, consisting of 3 input neurons (spatial distance, 
Levenshtein distance and a polarized variable with an initial 
value of 1), 2 hidden neurons and 1 output neuron. Because we 
observed that venue characteristics with large attribute values 
affect the feedback process greatly, we normalized the input data 
with a linear scaling transformation [14]. In our transform, the 
formula used is  
 

I = Imin + (Imax - Imin) * (D - Dmin) / (Dmax - Dmin), 
 
where I is the value after normalization, Imin and Imax represent 
the normalization range (in our case -1.0 and 1.0 respectively), D 
is the value before normalization and Dmin and Dmax are the 
minimum and maximum values in our sample data. 

2.2 Performance of the Neural Network 
To test the neural network’s performance, we ran it on the 
remaining 160 pairs from our original set, for which we know 
the correct classification. In order to configure the NN’s learning 
behaviour on the task, we experimented with different learning 
rate and momentum combinations. In [15], it is suggested that 
learning rates are typically set to 0.1 and momentum values to 
0.9. We explored the region around these settings, trying out all 
the possible combinations for learning rate L∈[0.05, 0.25] and 
momentum M∈[0.75, 0.95], in steps of 0.05 for each value. This 
resulted in 25 L-M value combinations. For each combination we 
trained the network 20 iterations and recorded the accuracy of 
the NN in correctly classifying whether a venue pair is matching 
or non-matching. For each iteration of training, we allowed a 
maximum of 3 attempts (rounds), which meant that if training 
was not successful (i.e. it met our maximum squared error 
threshold of 0.5), it could be attempted for a total of up to 3 
times. 

From this analysis, it is obvious that as both learning rate 
value grows, momentum seems to have very little impact on the 
accuracy of the predictions, up till the combination L,M=[0.15, 
0.9]. From this point onwards, as the learning rate increases, the 
combinations with any momentum value bring instability to the 
NN, as indicated not only by the lower accuracy scores, but also 
by their larger standard deviations. When taking into 
consideration the number of training rounds required to 
successfully complete training, it is clear that the operational 
parameters of the network offer increased accuracy and less time 
to successfully train for L∈[0.05, 0.1] and momentum M∈[0.75, 
0.95]. From these combinations, we chose to continue with 
L,M=[0.1, 0.8], as this combination offers a good compromise 
between accuracy and trainability. 

 

 

Figure 1. Performance of NN for all L-M combinations 

 

Figure 2. Effect of momentum values on the accuracy of 
the NN 
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Figure 3. Training rounds required to successfully train 
the NN for all L-M combinations 

Finally, we experimented with the number of hidden layers 
and the neurons within them. First, using one hidden layer, we 
experimented with the number of neurons, running a training 
and accuracy test 15 times for each value of neurons ranging 
from 1 to 10 ( 

Figure 4). An ANOVA of the results indicated that there was 
no statistically significant difference in the accuracy obtained 
(p=0.725). The best accuracy was obtained with two hidden 
nodes (M=86.79, SD=0.88). 

 

Figure 4. Effect of number of hidden neurons in a single 
layer on our NN accuracy 

Subsequently we experimented with the number of hidden 
layers (H) and neurons (N) and examined the combinations HxN 
of [1x6], [2x3], [3x2] and [6x1]. An ANOVA confirmed that the 
difference in performance for all these combinations is 

statistically significant (p<0.05), clearly setting apart the 
configurations of [1x2] (from our previous experiment) and 
[1x6], [2x3] from the rest of the configurations (Figure 5). A 
further ANOVA between these three configurations did not 
show a statistically significant result (p=0.757), hence we 
proceeded with configuring our NN with a learning rate of 0.1, 
momentum of 0.8, one hidden layer with two neurons. 

 

Figure 5. Effect of NN topology hidden layers and neurons 
(HxN) on our NN accuracy 

With these settings, we take a closer look into how the NN 
performed with our data. Using the 320 Facebook venues, we 
attempted to match these to a further set of 320 random venues 
from Foursquare. A manual inspection showed that 167 of the 
Facebook venues did actually match a venue in the Foursquare 
set. To evaluate the NN performance, we paired each Facebook 
venue with  each Foursquare venue, ran the pair into the NN and 
for each Facebook venue, we recorded the paired Foursquare 
venue for which the NN provided the best score (i.e. confidence 
on whether it matched or not), ranging from [1, -1]. From these 
tests, we found that the NN was able to correctly match 133 of 
the 167 truly matching venues (79.6%). For a further 34 venues 
(20.4%), while a match did exist, the NN was not able to find it.  

For the correctly classified pairs, we note that the average 
score provided for the best matching pair was 0.55 but there is 
quite a wide fluctuation in the results (SD=0.52). Nevertheless we 
note that 69.2% of the correctly matched venues are obtained 
with a score of 0.5 or greater (Figure 6). Using this score figure as 
a threshold, the NN correctly identified a match for 92 of the 
Facebook venues (55%) but also incorrectly identified a match for 
13 Facebook venues (7.8%).  
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Figure 6. Distribution of NN score for all correctly 
matched pairs 

 

Figure 7: Classification results against Geographic and 
Levenshtein distance values 

The classification results for the entire test set as a function 
of geographical distance and Levenshtein distance are shown in 
Figure 7. The results for those pairs reported with a score of at 
least 0.5 is shown in Figure 8, where we note that problems seem 
to arise because of the increase of Levenshtein distance in the 
pairs. The 92 correctly identified pairs exhibit a mean 
geographical distance of 16.03m (SD=12.14m) and Levenshtein 
distance of 1.02 (SD=1.74). For the 13 wrongly identified pairs, 
the respective values are 15.37m (SD=12.86m) and 4.0 (SD=1.47). 
A Mann-Whitney test reveals a statistically significant difference 
(p<0.01) only for the Levenshtein distance, revealing that the 
issue here is the venue names, which happen to be close 
geographically but also quite close as far as Levenshtein 
distances are concerned. As a comparison measure, when 
considering all those pairs where the best match is reported with 
a confidence of <0.5, the mean Levenshtein distance for non-
matching pairs (173) is 14.78 (SD=8.90). For this said set of 

venues, where a match was successfully found (41 cases), a 
statistically significant smaller Levenshtein distance was found 
at a value of 10.05 (SD=5.32) (p<0.01). 

  

Figure 8: Classification results against Geographic and 
Levenshtein distance values (score>=0.5) 

Finally, we turn our attention to those 34 instances where the 
NN failed to find an appropriate match for the Facebook venues 
but such a match did, in fact, exist in the Foursquare set. In these 
instances we observe that the mean geographical distance 
between the points is very large (116.53m, SD=150.11m) and that 
the mean Levenshtein distance is very close to that of pairs 
where an appropriate match was not found (11.21, SD=7.90). It is 
clear for these results that the determining factor, which caused 
these possible matches to be discarded (i.e. to yield a lower score 
in the NN), was the large distance of the venues in the different 
datasets. The larger Levenshtein distance can be attributed to the 
inclusion in several cases of descriptive words (e.g. “Stone Bar” 
vs. “Stone”) or alternative word order (e.g. “Happy Café” vs. 
“Café Happy”).  

2.2 Comparative evaluation with NP and LCS 
As a last step, we proceeded to examine our NN approach 
against the baseline cases of Nearest Point (NP) and Longest 
Common Substring (LCS). We used a set of 480 venues, of which 
240 were true matches and 240 pairs false matches. The NP 
algorithm was successful in identifying 47.92% of the cases 
correctly, while this percentage rose to 78.33% for LCS. The NN 
approach obtained an accuracy score of 83.75%, clearly 
performing better than the other two. We further proceeded to 
include the remaining of the 1777 Foursquare venues into the 
trial, matching them randomly with Facebook venues, thus 
significantly increasing the number of false matches. We found 
that the accuracy in classifying the pairs as matching or non-
matching fell significantly to 30.8% for NP, remained practically 
the same with 78.3% for LCS and declined also slightly for NN 
(83.3%). The difference in accuracy between NP and LCS was 
statistically significant (p<0.01), while the same cannot be said 
for the difference between LCS and NN, though the p value was 
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close to statistical significance (p=0.06). These results again 
highlight the importance of venue naming as a measure for 
determining matching venues, as it is clear that geographical 
distance alone is not sufficient as a measure and LCS 
outperforms NP. 

 

Figure 9. Performance comparison vs. NP and LCS 

3  Discussion and Future Work 
As can be seen from our results, neural networks show 
significant promise in solving the problem of matching POIs 
from distinct social networks with considerable success. Our 
approach yields a better result than Scheffler et al. [11] and, at a 
threshold of 0.5, largely avoids the problem of returning false 
matches as encountered by McKenzie et al. [12]. However as an 
approach, it does have some limitations, which we will now 
discuss.  

Firstly, we used a dataset which contained many Greek 
names. To address the issue of several venues being named in 
Latin script in one SN but Greek in the other, we transformed all 
names using a “Greeklish” function, which is imperfect, as there 
is no “standard” for writing “Greeklish” and hence our ruleset 
can produce different results from the way an individual might 
spell a venue name in “Greeklish”. This introduces uncertaintly 
in our NN which a human user might not face. Unfortunately, 
because we needed to manually match our data based on our 
local experience, we could not avoid this issue.  

Continuing, our NN was trained on data from one city only, 
hence we cannot generalize our results for other cities. This is 
because SN use in different cities can vary (some cities may not 
have as many venues represented, or may have many more that 
are closer packed together). Further, our approach uses the 
Levenshtein distance, which, in itself, is a simple measure for 
comparing strings.  

We are currently investigating other techniques which may 
yield additional input for the NN, such as phonetic similarity. 
We are also considering a transformation filter which will 
remove some common keywords, such as venue type descriptors 
(e.g. “café”, “restaurant”) from venue names, as well as duplicate 
words in the venue name. Our NN might be improved in the 
future by adding further information values into the neural 

network input neurons. As an example, we might use the venue 
category descriptors (although matching the categories 
represented in varying SNs is another issue), or the number of 
likes, check-ins and tags that this venue has. The latter seems 
like a promising element, as in our dataset, we have found that 
the total number of Facebook “likes” and Foursquare “check-ins” 
for matching venues is strongly correlated (Spearman’s R=0.208, 
p<0.01). We are also exploring linkages between the number of 
“tags” and unique users tagged in a venue.  

As a last step, we are considering the development of a 
mobile application that will leverage from this functionality, in 
an architecture that offloads computation and matching to a 
central server. We envisage users being better informed in a 
locality about the social semantics of venues, by offering a 
unified view of SN statistics for a particular place, hence 
enhancing their trust in the information provided. Our desire is 
to also implement an explicit feedback mechanism which will 
allow users to manually suggest or correct matches to venues, 
hence providing further feedback and training data to our NN-
driven system. 
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