
ORIGINAL ARTICLE

A calendar based Internet content pre-caching agent
for small computing devices

Andreas Komninos Æ Mark D. Dunlop

Received: 14 March 2006 / Accepted: 17 January 2007

� Springer-Verlag London Limited 2007

Abstract We described in earlier publications the prin-

ciples of a system where Internet content would be pre-

cached, based on contextual information obtained from a

user’s electronic calendar. The model for such a system

envisioned a set of cooperating agents, distributed on a

user’s desktop and mobile device, which would be

responsible for making decisions on the context and pref-

erences of the user, and downloading the relevant internet

content through a land-based broadband connection and

storing it on the mobile device. This paper presents and

discusses established pre-caching techniques and their

suitability for use on mobile information access scenarios.

It proceeds in describing the implementation details of an

alternative approach, a calendar-based pre-caching system

and presents the findings of tests that were made with

human subjects on such a system.

Keywords Mobile information access �
Electronic calendars � Internet content pre-caching

1 Introduction

Motivated by the disparity of desktop and mobile Internet

access, both in terms of available bandwidth and in terms

of cost, this paper presents research into an alternative

method of making Internet content available for mobile

users. This method is based on the extraction of contextual

information regarding the user’s activities and interests

using their electronic calendar as a main source, and pre-

loading their mobile device with Internet content, using a

land-based connection.

The main aim of the research presented in this paper is

to investigate whether calendars can indeed provide

information that can be used to pre-fetch useful Internet

content for mobile users. While it is expected that such

an approach cannot fulfill the entirety of Internet con-

tent needs for a user, the work presented here provides

evidence to the extent to which a mobile cache can be

populated with relevant documents that the user could find

of interest.

Further to this, this research is concerned with the po-

tential of calendar entries to be used as sources for web

query generation, independently of the entry brevity and

without the direct involvement of the user. This is an

essential step for the investigation of the aforementioned

aims, given that an appropriately formulated web query

would have a better chance of retrieving relevant docu-

ments and thus populate the mobile cache with more

appropriate results.

Finally, this paper shows that it is indeed possible for a

predictive pre-caching system to efficiently adjust itself to

the preferences and circumstances of the user as an indi-

vidual, in order to obtain optimal retrieval performance.

While not directly related to the main aims of this re-

search, we report further results and findings which con-

cern the usability and interaction patterns within electronic

calendars, the document reading behaviour on mobile de-

vices and the suitability of implicit interest indicators for

information retrieval on mobile devices.

A. Komninos (&)

Glasgow Caledonian University,

70 Cowcaddens Rd., Glasgow G4 0BJ, UK

e-mail: andreas.komninos@gcal.ac.uk

M. D. Dunlop

University of Strathclyde, 26 Richmond St.,

Glasgow G1 1XH, UK

e-mail: mark.dunlop@cis.strath.ac.uk

123

Pers Ubiquit Comput

DOI 10.1007/s00779-007-0153-4

2 Motivation and current pre-caching techniques

One of the basic issues in the problem of effectively pre-

caching internet content needs, whether on a large scale, such

as in servers or proxies, or on a personal level, is the deter-

mination of exactly which documents should be pre-cached.

Taking this decision at a level that allows for maximum

personalization, involves the observation of a user’s behav-

iors, in order to create suitable models that would encompass

these behaviors and allow accurate predictions to be made.

One of the earliest attempts at the automatic prediction

and retrieval of Internet content was described by Bala-

banovic et al. [1]. The system described there forms a

model of each user’s preferences and continuously adapts

itself to reflect the user’s opinions of the content that is

prefetched. The user is presented with a collection of hy-

perlinks to documents that the system has identified as

potentially interesting. There is an option for the user to

explicitly rate each link (from +5 to –5), therefore pro-

viding the system with simple relevance feedback. Even

though the scheme employed by the researchers is a rela-

tively straightforward approach, they succeeded in proving

that there are significant gains that can be made through the

personal profiling of users.

Wang and Crowcroft [2] discuss the some tradeoffs

between pre-fetching and the improvement of latency in

the www. Also, they present an implementation of a

deterministic pre-fetching approach, called Coolist. Their

system is layered between the client and the proxy server

and organises websites in folders. These folders can then be

assigned three methods of pre-fetching. Batch pre-fetching

is the first method, where a site is scheduled for down-

loading at a given date or time. Another method of pre-

fetching is described by the term ‘‘start-up’’ and means

that a site will be pre-fetched when Coolist is invoked.

Finally, their third proposed method is pipeline pre-fetch-

ing, where sites are grouped for pre-fetching. When the

first page in a group is requested, the next one will be

automatically pre-fetched, regardless of the fact that a user

may have not requested it.

Another discussion of the advantages of pre-fetching

was carried out by Cunha and Jaccud [3], who proposed

two algorithms for the prediction of the user’s next action

while browsing the web. Their first algorithm, using Ran-

dom Walk approximation, projects the long-term interac-

tion trend, while a second algorithm focuses on the short-

term trends. Using a model described by Thiebaut [4],

which relates the accumulated number of cache misses to a

program’s random walk range, the researchers show that it

can be successfully applied to characterise users’ strategies,

under the hypothesis that these relate to an infinite brow-

ser’s cache. This model is mathematically described as

follows:

NðrÞ ¼ Ar1=h; r[> 1; h � 1:

In this equation, r is the number of references, N(r) is the

accumulated number of misses, h sets the curve growth

pace, and A is a constant. A second method is described

within the same report, which uses an algorithm of two

phases: firstly, a preparation phase computes the first order

difference of the envelope of the user’s profile curve, dis-

placed by a factor of 0.5 (for ease of detecting behaviour

changes). Secondly, the prediction phase determines how

conservative the user was in the last t accesses. Also, a

determination of how much history is made, based on that

count, in order to compute the desired set of coefficients

that minimise the short-time prediction error, around a

vicinity of size n, for a sample at virtual time r. A routine,

based on Durbin’s method to calculate the linear prediction

coefficients is then called, and lastly, the predicted value is

computed as a linear combination of the past NCOEF

terms. The authors show that both user models manage to

achieve a degree of accuracy around 85%, which can be

applied in conjunction with pre-fetching techniques.

In his technical report, Palpanas [5], investigated the

feasibility of using a model based on the partial-match

prediction algorithm, for pre-fetching documents from the

web. In his model, a pre-caching agent acts as an inter-

mediary between the client and the server(s) that a user is

connected to in a session. Having taken into consideration

the special characteristics of the web and after tailoring the

algorithm to accommodate those, the author concludes that

his proposed scheme’s implementation is feasible and that

it would be assistive to users who ‘‘consistently follow

regular access patterns, when searching for information’’.

This conclusion is reached through simulations, run on the

access log files of the web server of the department of

computer science, at the University of Toronto.

Jiang and Kleinrock [6] presented a system in which

pre-fetching is decided by the client, based on usage sta-

tistics about embedded HREF tag attributes. In their work,

the client monitors its available bandwidth continuously

and pre-fetches web content, choosing however, not to pre-

fetch images, in order to save bandwidth. An algorithm to

decide which pages should be pre-fetched is used, based on

the client’s access history combined with the server’s ac-

cess histories for each file they hold. Further filtering on the

decision process is placed by placing an upper bound on

the pre-fetch threshold, which is a function of the system

load, capacity and cost of a time unit and a system resource

unit. This two-tier decision process allows the system to

maximise the performance gaining that can be achieved

through pre-fetching.

Further application of Jiang and Kleinrock’s work is

found in another paper that investigates pre-fetching for

mobile users [7]. Interestingly, in this paper, the authors

Pers Ubiquit Comput

123

extend their prediction algorithm to achieve higher hits, by

assigning users to a category (such as those interested in

database research), amongst other things. The second

component of their scheme is a server threshold model,

which judges whether a page should be pre-fetched based

on:

• The amount of time that may be saved by pre-fetching a

file that may be needed

• The amount of bandwidth that will be wasted if the file

is not used;

• The impact of the pre-fetch request on other users

whose normal requests may be delayed by the pre-fetch

request.

The latter is a necessary consideration in order to ensure

that the overall system performance can be improved by

pre-fetching the file. The authors proceed to conclude that

their approach is well suited to mobile users, who may

need to switch between different network connection

methods (modem, broadband, satellite, wireless). This is

because the separate server threshold module allows the

adaptability of the prediction algorithm, ensuring the best

possible performance under each network condition.

A simpler implementation than the one by Ziang and

Kleinrock was proposed with the WCOL system, by Chi-

nen and Yamaguchi [8]. Their system is a research proto-

type that pre-fetches embedded hyperlinks top-to-bottom

without regard to likelihood of use. Embedded images of

pre-fetched pages are also pre-fetched. Bandwidth waste

can be capped by configuring WCOL to pre-fetch no more

than a certain number of hyperlinks, and no more than a

certain number of images embedded within pre-fetched

hyperlinks.

In 1999, Dan Duchamp [9] presented his own work on

pre-fetching hyperlinks, based on a predictive algorithm at

a client level, which is however, able to communicate

usage statistics from the server. Because the client is un-

able to form an objective view of the usage for a given web

page, unless that page is visited often by the user, it passes

on to the server the current usage statistics it has obtained,

but also demands the aggregated statistics for that page, as

held by the server. The performance results obtained by an

implementation of the aforementioned idea were strongly

encouraging. For example, of all the pre-fetched pages, a

figure of 62.5% was eventually used. An improvement in

latency of the order of 52.3% was observed, while notes for

the consideration of network overhead due to the usage

reports are being addressed. Further concerns regarding the

size of the modifications necessary to the browser (Moz-

illa) and the execution time overhead due to these, are

eased, since these do not appear to be significant.

Continuing on the theme of document pre-fetching on a

personalised level, more related work was carried out by

Fan et al. [10]. They propose pre-fetching at a proxy level,

under the argument that because proxies can collect access

histories for limited numbers users, this would present

significant advantages over server-level pre-caching, since

servers would be able to only collect access histories for

the entire www population. An investigation of prediction

by partial match algorithms follows in their work, followed

by a simulation which shows an improvement in latency

between low-bandwidth clients and proxies, of the order of

~23%.

Pitkow and Pirolli [11] explore predictive modelling

techniques that attempt to reduce model complexity while

retaining predictive accuracy. The techniques merge two

methods: a web-mining method that extracts significant

surfing patterns by the identification of longest repeating

subsequences (LRS) and a pattern-matching method that

embodies the principle of weighted specificity. Their work

is largely motivated by previous studies by Schechter et al.

[12], who utilized path and point profiles generated from

the analysis of Web server logs to predict HTTP requests.

Also, much reference is made to the work by Padmanabhan

and Mogul [13], who describe the efficiency of Markov

models for pre-fetching. The authors use the definition of

longest repeating subsequence by Crow and Smith [14],

which contains the following terms:

• Subsequence means a set of consecutive items

• Repeated means the item occurs more than some

threshold T, where T typically equals 1

• Longest means that although a subsequence may be

part of another repeated subsequence, there is at least

one occurrence of this subsequence where this is the

longest repeating.

Two models are proposed, firstly a hybrid LRS model,

which extracts LRS patterns from a training set and uses

them to estimate a first order Markov model. This model

is compared against a first order Markov model estimated

from all the paths in the training data set. The second

hybrid model proposed is one that decomposes the ex-

tracted LRS subsequences into all possible n-grams of

various lengths. This is called the All Kth Order LRS

model, as all orders of k are able to make predictions.

This model is compared against an All-Kth-order Markov

model derived from all the possible subsequences,

decomposed into varying length n-grams. Further sim-

plification is added to their web surfing model, by

assuming that surfing paths have an average branching

factor b. Surfers may start in b places and from each

page, they move on to one of b pages on average. By

assuming that surfing paths of length S can be divided

into S/k subpath partitions (0 < k £ S), the complexity

cost C(k), in terms of the number of patterns as a function

of k can be described as

Pers Ubiquit Comput

123

CðSÞ ¼
XS

i¼1

ðS=iÞbi

through analysis of the applied methodology, the authors

showed that in the case of modeling paths under the first

hybrid model, the reduced LRS model was able to match

the performance accuracy of the first order Markov model

while reducing the complexity by nearly a third. They also

then showed that overall hit rates could be raised by

including the principle of specificity, with the All-Kth-

Order LRS model almost equaling the performance of the

All-Kth-order Markov model while reducing the com-

plexity by over an order of magnitude. Finally, within their

findings, it was further shown that increasing the prediction

set has a dramatic impact on predictive power, with the

predictive power of each method nearly doubling by

increasing the set size to four elements.

Swaminathan and Raghavan [15] presented a study of

web pre-fetching, which is based on the characterisation of

the web client alone, without depending on server or proxy

side algorithms (Fig. 1).

The above figure shows the principle of the system as

described by the authors. The input stream consists of

symbols representing the URLs. The learning module

learns the trend in visit counts associated with the past n

URLs and the order of URLs visited and it is implemented

using genetic algorithms. The comparison module com-

pares the predicted and the actual streams and provides

feed back of the error in prediction to the learning module.

The generative module attempts to predict the next k URLs

that might be visited for possible pre-fetching. Finally, the

pre-fetching module decides which URLs to actually pre-

fetch based on constrains such as available bandwidth,

recommendation from the server and the state of the web

client. In their research, the authors highlight the problem

of dynamically generated Internet content, which renders

pre-fetching approaches useless. Indeed, given the trend to

deliver highly customisable content to users and the gen-

eric structure that is ‘‘populated’’ by dynamic articles,

which now forms the basis of many major sites, the validity

of the pre-fetched content becomes an important issue. An

interesting point in this research was that the authors

manage to prove, through simulation on actual client tra-

ces, that their proposed pre-fetching technique allows the

maintance of client cache hit ratio of around 13% on

average, even when all the visited URLS are dynamic.

Interesting research on proxy cache was also presented

by Foygel and Strelow [16]. The authors propose a system

of hierarchical proxy caches, where their algorithm ob-

serves requests to a cache and its ancestors, before initi-

ating pre-fetching for the predicted future requests. This

would only happen if the pre-fetching action is deemed

likely to reduce the overall latency experienced by the

cache’s clients. Their algorithm is based on the continuous

evaluation of the usefulness of each document in the cache,

but also of documents that are not in the cache, but are

likely to be needed in future requests. The set of documents

(fetched or un-fetched), which has the greatest esteemed

value is kept in the caches. In their conclusions, the authors

argue that a hierarchical cache network structure is the

ideal foundation on which pre-fetching can yield signifi-

cant performance gains. Again, however, they highlight the

concern over increased network utilisation, although they

argue that it is often the case that because traffic is added to

under-utilised networks, the performance gains can be

obtained without significant cost.

Brian Davidson [17] presented an article, which relates

to predicting web actions from HTML content. In his work,

he compared the simplistic approaches so far taken for pre-

fetching based on HTML content, with an information

retrieval-based one that ranks the list of links using a

measure of textual similarity to the set of pages recently

accessed by the user. These simple approaches vary, but

examples are namely pre-fetching all hyperlinks in a page,

or pre-fetching all hyperlinks in a serial manner, as time

allows.

The algorithm used for measuring the similarity between

two text documents (D1, D2) is

TextSimðD1;D2Þ ¼
X

all w

TFðw;D1Þ TFðw;D2Þ

ðTFðw;D1Þ ¼ the number of times term w appears in D1Þ

having compared text-similarity-based ranking methods

to simple original link ordering and a baseline random

ordering, the author found that similarity-based rankings

performed 29% better than random link selection for pre-

diction, and 40% better than no pre-fetching in a system

with an infinite cache.

The ideas of Davison are implemented in Mozilla, an

open-source web browser and a technical report is made by

Zhang et al. [18], who incorporated the aforementionedFig. 1 Operational principles diagram [15]

Pers Ubiquit Comput

123

content-based prediction algorithm with the history-based

prediction described in another work by Davison [19].

Further related research, however, not immediately a

document pre-caching technique in its own right, was

presented by Cohen and Kaplan [20]. Their proposal is that

in order to overcome potential problems in the validity of

cached documents, and other problems that relate to the

increased network utilisation, which in turn might cause

clients to experience even more latency, one could pre-

fetch (rather, pre-execute, one might add) the means of

getting a document, rather than the document itself. This is

because of the observation that the actual steps required for

the setup of a connection, are relatively costly in terms of

time. A suggestion is made that this pre-transfer prefetch-

ing could be accomplished by

• Pre-resolving, which means that the browser or a proxy

could perform a DNS lookup before a request to a

server is issued, therefore eliminating the DNS query

time from user-perceived latency.

• Pre-connecting, where the browser or a proxy estab-

lishes a TCP connection to a server, prior to a user’s

request. This should address the problem of connection

establishment time, which is significant compared to

HTTP request response times.

• Pre-warming, or, in other terms, sending a dummy

HTTP HEAD request prior to the actual request, in

order to address the problem of start-of-session latency

at the server, which tends to be larger for first-time

requests than follow-up requests (the server is referred

to as being ‘‘cold’’ or ‘‘hot’’, once a request has

already been issued).

The tests conducted in this research show a significant

decrease in average latency times, proving that pre-fetching

the means for getting a document is a useful technique that

can be applied to the problem of reducing overall latency.

3 Limitations of current research

The techniques presented in these research papers describe

the process of pre-caching documents in a dynamic man-

ner, whilst however, presuming that the user has a currently

active connection and is using (surfing) the Internet. Al-

though all of the concepts are largely relevant and indeed

of great interest, they suffer from the disadvantage that

network connectivity is a pre-requisite and is essential to

their operation.

In mobile devices such as PDAs and Smartphones,

network connectivity is not a transparent service which is

normally available under typical operating circumstances,

such as on modern broadband-connected desktop comput-

ers. Indeed, network connectivity depends heavily on the

location of the user and the strength of wireless network

signals, the interference of nearby radio-wave emitting

devices with network antennae, the subscription to co-

operating networks, the present load of the wireless net-

work and the type of wireless network connectivity sup-

ported by the mobile device hardware. All of these factors

are commonly present in everyday situations and make the

likelihood of network unavailability rather high.

Further to this, most of the aforementioned pre-caching

models make no, or very little, consideration of the band-

width used to pre-fetch files which will never be used and

assume a practically unrestricted local (or proxy) cache.

With mobile devices, one has to consider that the available

bandwidth is generally very limited, as well as extremely

costly, as the charging mechanism is per unit of data

(typically KB), rather than time, when using connections

that provide acceptable surfing speeds (GPRS, 3G). Addi-

tionally, the devices themselves offer very little memory

capacities, thus placing significant constraints on the size of

caches that can be created for web surfing. It can therefore

be generally concluded that current predictive pre-fetching

models cannot be directly applied.

Given the high probability of network unavailability in

the daily environment, Internet content pre-caching seems a

logical solution to partially solving the problem of mobile

information access. However, pre-caching, as described in

aforementioned research, is a technique that is largely

inapplicable (or even unacceptable), due to the significant

cost and the charging mechanism for accessing the Internet

over a wireless connection. In fact, given the charging per

kilobyte that most service providers adopt for GPRS and 3G,

it would seem obvious why a user might want to initiate data

transfer from the Internet, as only they deem necessary. Wi-

Fi networks on the other hand are a lot less expensive but are

very limited in range, thus preventing true mobility.

Another type of solution to pre-caching Internet content is

common to several types of mobile devices are not equipped

with wireless connection (actually even to devices that have

integrated wireless capabilities), but have software for

browsing the web already installed. Users of devices such as

the ones we described, tend to resort to commercial pro-

grams such as AvantGo, that provide a means of pre-caching

selected or interesting pages based on declared user prefer-

ences and storing them for off-line browsing. However, such

services offer static, rather than dynamic personalization,

and depend heavily on explicit user instruction on the

(limited) type of content that should be pre-cached.

4 A predictive pre-caching system for mobile devices

Information access relates strongly to the individual user’s

interests, which rise from general, always valid (perma-

Pers Ubiquit Comput

123

nent) preferences (e.g. aviation news will always interest

an aviation enthusiast, regardless of their profession).

Information access also is strongly dependent on prefer-

ences which can vary, according to the task the users are, or

anticipate to be engaged in. While the knowledge of both

contexts under which information access might be desir-

able are necessary for pre-caching useful information, in

our research, we focus more on the automatic prediction

and comprehension of the activities a user might be en-

gaged in, in the near future.

Thus we hypothesized that it would be possible for a

personal pre-caching algorithm to examine a user’s elec-

tronic calendar as a source of information that it could use,

in order to make dynamic informed predictions about the

user’s future tasks and provide useful content to the user.

While it may be unrealistic to expect a calendar-based pre-

fetching algorithm to describe all of the user’s preferences

and content needs or desires in a perfect manner, we expect

that content that is relevant to the user’s daily interests can

be picked up. Further more, we were interested in inves-

tigating whether permanent user preferences can be cap-

tured in order to tailor the quantity and quality of the

content better to suit the user.

5 The pre-caching system

5.1 Overview

To explain the principles of operation behind the system

we propose, it might be useful to present an example

scenario. Let us consider the following example: each entry

in the user’s calendar should contain at least one keyword,

which will help us understand the nature of the activity

denoted by the entry. If a calendar entry contains a key-

word such as the name of a city (e.g. Edinburgh), of which

the user is not a resident, it can be assumed that the user

will be present at that location for some purpose which is

possibly described elsewhere in the entry. Typical infor-

mation about cities could then be downloaded through web

searches such as ‘‘Edinburgh map’’, ‘‘Edinburgh accom-

modation’’, ‘‘Edinburgh Museums’’, etc. Also, further and

more specialised searches, formed through combination

with other information retrieved from the calendar entry,

can be conducted, e.g. ‘‘Edinburgh Holiday Inn’’ or

‘‘Edinburgh HCII2004 conference’’.

The predictive system can then be enhanced over time

through use of implicit or explicit feedback to learn and

remember a users’ preference for different categories of

information, e.g. more interested in transport links than

hotels. Such a predictive system should be able to obtain

information from the user directly and indirectly. The

majority of information should be obtained through

indirect means, in order to minimise interference with the

user’s other activities. However, the system should main-

tain its ability to directly interact with the user, in order to

resolve any possible uncertainties.

In previous work [21], we described the overview

principles for our pre-caching system, whose software

comprises of two core modules, each of which encom-

passes a number of cooperating agents. The first module

resides on a desktop computer and works in order to extract

entries from the user’s electronic calendar. It then uses the

desktop’s connection to pre-cache documents. The second

module is responsible for presenting the pre-cached content

on the user’s mobile device and therefore resides therein.

The second module is also responsible for evaluating the

user’s interactions with the pre-cached content and passes

back this information to the desktop module, which then

uses it to make more informed guesses at what it needs to

pre-cache (Fig. 2).

5.2 Identifying keywords

One of the most important problems that the system needs

to solve is the identification of keywords within the cal-

endar entries, which can be used to initiate the process of

web query formulation. To achieve this, a database of

known keywords (identifiers) could be kept, against which

the system would compare the content of the calendar

entries.

In order to train the system with the ability to recognise

potential keywords, it was decided that an analysis of the

contents of a sample of real world calendars would be

necessary. The scope of this analysis would be to determine

firstly which suitable words and of what types, would be

frequently encountered in a calendar. Subsequently, in or-

der to confirm previous early research on calendars, an

attempt would be made to identify calendar entry catego-

ries, so the list of keywords for these could be supple-

mented with other words that belonged to similar contexts.

For example, if the analysis was to show that placenames

Fig. 2 Overview model of the system components

Pers Ubiquit Comput

123

(‘‘Glasgow’’, ‘‘Edinburgh’’) were common occurrences,

then an appropriately extensive list of placenames would

need to be compiled. These keywords in essence are

identifiers for the categories they represent.

Although early research by Kincaid and Dupont [22]

had highlighted some of the categories of entries com-

monly encountered in calendars, it was felt necessary to

re-investigate this matter, firstly due to the age of the pre-

ceding research (which was not based entirely on electronic

calendars), and secondly to tune the system performance for

use by individuals in an academic context. Because the

subjects of our final experiments were expected to be from

an academic environment, it appeared reasonable to attempt

to gear the system towards the particularities of the aca-

demic community. The system could have similarly been

geared towards other professional areas or could be tailored

towards a general population. This would require the

selection of appropriate test subjects and since the compar-

ison of performance on different target groups is not part of

the scope of this research, the academic sample and subjects

were judged to be appropriate and adequate.

From our research in the categorization of entries, it

immediately became clear that the calendar entries tend to

fall within specific categories. The categorisation of the

entries was done manually, with guidance from the original

entry authors, where ambiguity made it necessary. This

categorisation comes as a confirmation of the findings of

previous research, and especially those of Kincaid and

Dupont, who discovered that users tend to use their cal-

endars mainly to keep a record of meetings, appointments,

events, travel, reminders, notes and as ‘‘to do’’ lists. This,

in turn, suggests that there is a consensus to the items that

form appropriate calendar entries and that there is a com-

mon mental representation model for the organization of

these entries amongst humans. There is a slight variation in

the categorisation of entries that was made with these new

findings, although this can be considered natural, due to the

particularities of the academic environment. However, the

categories with the highest frequency are the same as those

in previous research. Table 1 shows the categories and

entry frequencies as derived from this research’s sample.

It is important to stress here that these categories reflect

the opinions of the calendar users, who are highly familiar

with the context of their entries. One can observe that there

is some overlap between the calendar entries; for example,

birthday could be considered a subset of Social. However,

where such overlap is maintained, it is because there was a

strong indication from the users that such a low-level cat-

egory is significant and should exist separately from its

high-level parent.

The database of category identifiers which would be

compiled would not exclusively contain words, but also

short keyphrases, such as ‘‘travel to’’. The reason for this

choice was that it would be almost impossible to compile a

list of every possible associated identifier for every cate-

gory. Therefore by including keyphrases, we could infer

that an unknown word which would follow these might

actually be a good identifier candidate. For example, ‘‘trip

to Garnethill1’’ is a sentence where a human can imme-

diately identify Garnethill as the name of a place, even

though they might never have heard of it. It is also very

unlikely that the name of Garnethill would come up in any

general placename list. It was desired that same function-

ality for inferred knowledge should be implemented for the

system as well.

It might be argued that using pre-compiled lists and

rules as a basis might not be an optimal solution. However,

the process of recognising keywords and inferring their

meaning based on pre-compiled rules and lists is well-

established practice in the field of Information Extraction.

This practice is one of the two approaches generally

available for solving the problem of machine text analysis

and understanding, the other one being automatically

trained systems that do not rely on handcrafted rules and

databases. Given the recommendations of Appelt and Israel

[23] on the choice of approach and based on the good

availability of resource lists (e.g. name and place lists) and

the lack of extensive training data (calendar entries), the

manual approach was elected. Further detail on the auto-

matic categorization of calendar entries the performance of

our algorithm are described in [24].

5.3 Formulating queries based on keywords

With the appropriate keywords identified by the keyword

generator module, the next step the system should take is to

generate appropriate queries for these keywords. Some-

times a keyword on its own might be a good candidate for a

query. However, in order to obtain information that is

Table 1 Calendar entry categories and their frequencies

Category Frequency

Meeting (group) 53

Meeting (another person) 25

Reminder 18

Travel 13

Social event 13

Work task 10

Class (to attend) 10

General task (to-do) 7

Miscellaneous 7

Birthday 5

1 Garnethill, a region in the Glasgow city centre area (UK).

Pers Ubiquit Comput

123

closer to the needs or preferences of the user, the keyword

will have to be combined with other keywords to form

longer queries. Those additional keywords can be obtained

from the calendar entry itself, or could be retrieved from a

separate database of additional keywords which are known

to be typically included in queries that are based around the

original keyword.

To be able to adapt the system to the user’s preferences

and needs, it becomes apparent that all additional keywords

will need to be weighted in order of importance to the user.

Because some of the additional keywords that will initially

be provided might be irrelevant to the user’s context, the

system should be able to either negatively weigh these, or

increase the weight of additional keywords for which the

user was presented queries that retrieved ‘‘good’’ docu-

ments, while leaving other weights intact. A combination

of positive and negative weighting can also be used.

One approach to the problem of constructing an addi-

tional keyword database would be to create a list of po-

tential associations for each keyword contained in the

identifier database. In this manner, the level of relevance

between identifiers and additional keywords would be high,

although this would come at a considerable cost. The costs

of this approach would firstly be the large degree of

duplication of data, as an additional keyword might be

relevant to a multitude of identifiers. Secondly the con-

struction of appropriate additional keyword lists for every

single keyword would have to be done manually and there

is no guarantee that every single identifier would have an

additional keyword to reflect all context scenarios. Finally,

because of the specificity of the additional keyword asso-

ciations, a sudden or temporary change of context for the

user might be completely ignored or take a long time to

adapt to, which is of course undesirable.

An alternative approach would be to cluster the addi-

tional keywords into smaller databases, which will reflect

the association of each keyword category, rather than each

keyword individually, with additional keywords. The term

of clustering is borrowed from the Information Retrieval

field, where it is defined as follows:

‘‘...We define the organisation as the grouping to-

gether of items (e.g. documents, representations of

documents) which are then handled as a unit and lose,

to that extent, their individual identities. In other

words, classification of a document into a classifica-

tion slot, to all intents and purposes identifies the

document with that slot. Thereafter, it and other

documents in the slot are treated as identical until

they are examined individually. It would appear,

therefore, that documents are grouped because they

are in some sense related to each other; but more

basically, they are grouped because they are likely to

be wanted together, and logical relationship is the

means of measuring this likelihood...’’2

This is a more natural step to take, considering that cal-

endar entries are already clustered into categories by nat-

ure. Therefore web queries will be made by combining the

original keyword (category identifier) with either all or the

top n additional keywords that are associated with the

category. In fact, as the system becomes increasingly

accustomed to the preferences the user, the user-defined n-

sized window of additional keywords ranks should reflect

the true preferences of the user by returning a smaller

amount of keywords within the same window.

The additional keywords can initially be set to have the

same score, which would indicate an equal opportunity for

each additional keyword to rise up in the ranks and

therefore reflect a user’s preference, independently of that

preference’s commonality. Alternatively, additional key-

words can all be given different initial scores which would

reflect the general preferences and assumptions that could

be made for an average user. This would impede the

training process for users that have very particular

requirements, although for the majority of the users this

method should provide adequately promising performance

even from the early phases of use. We employed the sec-

ond option in our implementation.

In order to obtain additional keywords for each cate-

gory, three different methods were used in conjunction:

• Interviews where people were asked to give details of

typical searches they might have performed for calen-

dar entries of each category (during the calendar entry

sample collection)

• Calendar entry samples were given to independent

subjects who were asked to produce as many web

queries as they could for each entry sample

• Google’s keyword suggestion tool3, where category

identifiers were entered and a list of potential associated

keywords was returned.

In our implementation, the keyword analyser module

forms the following two types of web queries:

• Original keyword (or keywords, e.g. name + surname)

only

• Original keyword + additional keyword

The system can currently be set-up to fetch the top N

rated queries for each user, according to their rank value,

although for the main experiment, the amount of generated

2 HAYES, R.M., ’Mathematical models in information retrieval’, in

Natural Language and the Computer (Edited by P.L. Garvin),

McGraw-Hill, New York, 287 (1963).
3 Google Adwords keyword suggestion tool: https://www.adwords.

google.com/select/main?cmd=KeywordSandbox

Pers Ubiquit Comput

123

queries was limited to the top five rated items. When two or

more queries happen to be ranked equally, they are both

included in the generated query list.

5.4 Pre-caching documents

Having described the methodology for formulating queries,

the next logical step in the sequence of operation events for

the system is to submit these queries into one or more

search engines on the Internet, which in turn should be able

to retrieve links to relevant documents.

Those links should be followed in order to retrieve the

documents. From within the documents, further links can

be followed to documents within the same web site, or to

documents that are external to the site. If those external

documents were fetched and analysed, the system would

encounter yet more links, which could also be retrieved.

The retrieval process might be likened to a multi-tier tree,

where a document from the original query can be consid-

ered a root, further linked from it are second-level nodes

and links to further documents from these form edges that

lead to even lower-level layers of nodes.

It becomes apparent that the system could be locked

into a fetching mode, which will exponentially increase

the number of documents retrieved, without guarantees

that all of the lower-level nodes will be relevant to the

original query. In fact, it is logical to expect that the

degree of relevance will reduce with the increase of the

depth of the retrieval tree. Considering Jansen’s [25]

observation that only 50% of the original web documents

retrieved from web queries are classed as ‘‘interesting’’

by users, the lack of any guarantee of relativity of all the

supplementary retrieved documents is apparent. For this

reason a control mechanism should exist, which will ei-

ther limit the amount of levels the retrieval tree can have,

or be able to intelligently predict whether a linked doc-

ument might be worth pre-fetching. Based on the pre-

fetching methods researched earlier for desktop computers

and proxy caches, it becomes obvious that such decisions

have to be based either on data from server request sta-

tistics or an analysis of the target document, in which case

it needs to be fetched so it can be analysed. Such an

implementation technique as the latter might be consid-

ered an interesting exploration for the adjustment of per-

formance levels, however, it is beyond the scope of this

investigation. Therefore a logical solution for this problem

under these circumstances would be to implement a

mechanism that would limit the depth of the retrieval tree

levels for each document.

Further considerations would have to include the type of

Internet content that the system should be able to store.

Further from HTML documents which contain formatted

text, other elements such as images, .pdf or .doc files, audio

and video, might be desirable to have. All of these how-

ever, place a considerable stretch of the memory limita-

tions of current handheld devices. For this purpose, we

carried out interviews with users in order to discover

exactly what kind of content should be prioritised for

pre-fetching. The results of the interviews showed an

overwhelming preference to text (HTML, Word, PDF),

while other media such as images, audio and video were

considered largely irrelevant, unless a user was specifically

looking for such types.

Of the search engines available today on the Internet, the

most successful is the Google engine4. This engine was

chosen for the submission of the formulated web queries.

An observation by Jansen and Spink [26] indicated that the

majority of users (80%) only view between 10 and 20 re-

sults for each query, i.e. no more than one or two pages of

results. Because the Google search engine can retrieve

thousands of relevant results, a choice was made to limit

the returned results to the top ten, as ranked by Google. It

was felt that the choice to restrict the results to the top ten

was justified, bearing in mind the memory constraints that

are present on handheld devices. Furthermore, because

Google is widely considered to be the best Internet search

engine currently available, the choice was made not to

submit the queries to other search engines. The comparison

between the performance of Google and other search en-

gines was not of interest for the purposes of this research

and beyond this, such an attempt would greatly increase the

amount of retrieved documents without any expected sig-

nificant increase in the amount of retrieved relevant doc-

uments. This would place a significant and unnecessary

burden on the subjects of the main experiment. Although

collective filtering could be applied to perhaps include only

the top K results from a number of search engines, it should

be kept in mind that the optimisation of the cache, while

desirable, was beyond the purposes of this research. Thus

no services other than Google were employed in this in-

stance.

The Google result page is trimmed from all unnecessary

HTML elements in order to remove graphics, advertise-

ment and unnecessary links. Subdirectories are created to

store all the documents of the desired tree depth levels. The

retrieval procedure then works for each document of each

tree level, including the Google result page, in the fol-

lowing manner: firstly, the document is parsed and sear-

ched for links. Once a link is encountered, the linked

document is retrieved and stored in the appropriate subdi-

rectory. The link in the document under analysis is changed

to reflect the local relative URL of the newly fetched

document. The process continues until no further links can

be found in the document, in which case, the system moves

4 http://www.google.com

Pers Ubiquit Comput

123

on to the next document of the same depth level. In this

manner, one can envisage a horizontal breadth-first tra-

versal of the document traversal tree, in order to generate

the lower levels of pre-fetched document. The entire pro-

cess ends when the user-specified retrieval depth has been

reached.

Once the system is finished retrieving the top ten doc-

uments for each Google page, further transformation of the

Google page is made. A second-level parsing is performed

in order to separate the document titles, summaries and

URLs contained therein, and store them in an XML

structure. This XML structure will later be passed to the

handheld device, along with the relevant documents, and

will be used to display the retrieval results to the user.

5.5 Mobile component

5.5.1 Presenting results

Once the documents have been retrieved and sent to the

handheld device, a separate software component therein

should be responsible firstly for displaying the documents

to the user, and secondly for observing the interactions of

the user with these documents.

It is clear that for the first task, the design needs to

consider the physical characteristics of the handheld device

and especially the constraints placed by the dimensions of

the device screen. Taking in mind Nielsen’s observations

that users tend to dislike long pages which require lots of

scrolling [27], an implementation of the results browser

should be considerate of this natural tendency and contain

facilities that will allow the users to minimise the scrolling

needed. A collapsible tree-structured list of calendar en-

tries, identified keywords, searches and retrieved document

titles/summaries is potentially a good way of addressing

the scrolling problem. Unfortunately, due to the nature of

web pages, scrolling to view their content is inevitable.

However, the quality of the browsing is beyond the sys-

tem’s control and will be fully dependent on the device’s

integrated web browser. As this issue is beyond the scope

of this research, no attempt to write a dedicated web

browser was made.

5.5.2 Processing relevance feedback

Observing the interactions of the users poses several

questions that need to be answered. Firstly, which actions

of a user do reflect interest and therefore should be moni-

tored? Secondly, once such actions are identified, do they

all indicate the same amounts of interest or should their

importance be weighted with different measures? Based on

previous related research, an instinctive negative answer to

the last question is probably the right one. Indeed, as

mentioned previously in chapter 2, it has been shown that

not all kinds of interaction can provide dependable implicit

information on relevance.

On the handheld device, a log is kept of the user inter-

actions with the content. Based on this information, an

attempt should be made to judge the relevance of a given

keyword from the knowledge base to the user’s context and

determine which of these are likely to be wanted as part of

a query in the future. Given the collapsible presentation

structure, a log can be kept for:

• The viewing of the document index for a given search

• The viewing of the summary of a given document.

• The viewing of the document.

• The amount of time spent on a document that has been

opened.

• Any explicit feedback rating that a user might provide

for the document.

The incorporation of further heuristics, such as pointer

movement, highlighting of text, bookmarking and scrolling

in the document, would also be desirable. However, given

the implementation was on a PocketPC platform, program-

ming pocket internet explorer to trap such behaviours was

not feasible. In addition, some of these heuristics (e.g.

scrolling) would not be reliably applicable, given the lack of

previous research on small screen devices for such measures.

Upon loading, the handheld component examines the

XML structure passed to it and the XML-formatted Google

pages, in order to load the necessary details for presenta-

tion to the user. The pre-fetching activity details are pre-

sented using a collapsible tree structure list, which gives

details of the appointments, keywords identified, web

queries formed and document titles of each search (see

Fig. 3).

When a document title is highlighted, the user is given

the option via two buttons to either launch a descriptive

summary of the document, or open the document with

pocket internet explorer. The system monitors the collapse

Fig. 3 The multi-tier retrieval tree

Pers Ubiquit Comput

123

of the document list for a web query, the viewing of a

summary, the launch of pocket internet explorer and the

duration for which it is active, i.e. in the foreground. It is

assumed that the user will be reading the document for that

time. Also, when pocket internet explorer exits and the user

returns to the handheld software that is running in the

background, an option is given to explicitly rate the quality

of the document just read on a scale of 1–5 (Fig. 4).

To implement the document summary function, the short

document narrative that Google provides directly under the

document title in its results page is used. This is displayed as

a pop-up dialog box to the user, upon request, therefore

imposing an interaction cost on its viewing (Fig. 5).

5.6 Processing relevance feedback

For the heuristics mentioned above, we had to devise

appropriate weights and a method to combine their values

to form a score for each keyword. We define the impor-

tance I(k) of a keyword k to be

IðkÞ ¼ wEðkÞ þ
X

DðiÞ

where w is the weight associated with a viewed document

index for the keyword E(k) 2{0,1}, and D(i) is the

Fig. 4 The mobile user

interface, showing the

collapsible tree list. Each

keyword under a given calendar

entry (title), can be expanded to

show the queries formed for it.

For each query, a list of

retrieved documents is provided

Fig. 5 The auto-summary function and the explicit relevance

feedback screens

Pers Ubiquit Comput

123

importance of each document i that has been retrieved for

keyword k. Further more, we defined D(i) as follows:

DðiÞ ¼ aOðiÞ þ bSðiÞ þ cFðiÞ þ eTðiÞ

where O(i) indicates the viewing of document i, S(i) indi-

cates the viewing of its summary, F(i) is the explicit

feedback given by a user to the document, T(i) is the time

spent reading the document and a, b, c, e, are the respective

weights for each of these measures.

The weights w, a, b, c, and e take positive or negative

values. We wanted a mechanism that would promote the

appearance of preferred keywords in the queries. However,

the negative marking for undesirable keywords would not

only allow the improved promotion of desirable keywords,

but also, should one of the latter become undesirable, due

to perhaps the change of context of the user, it would not

take too long for it to start disappearing from the queries

(Table 1).

We experimented with several weights for our system

and we arrived to the conclusion that it is not only

important to consider the relationship between the weights,

but also the bias towards positive or negative marking.

Current research [8] shows that users will view only two or

three (on average) documents per web query and the vast

majority will visit at most two pages or results (approxi-

mately 20 results in all). The same research shows that an

estimate of 50% of documents viewed from these results

are expected to be relevant to the query. Therefore we

decided that a bias of approximately 1:7 in favor of positive

marking was reasonable. Because our queries will not

generate more than ten documents each, this means that

two documents with a positive overall rating will indicate a

successful and relevant query was made. The weights that

were used were as shown in Table 2.

There was some confusion as to the weights e, which

should be used for association with the reading time

interest indicator. As mentioned in Sect. 2, previous re-

search highlights a possible correlation between average

reading time and relevance of a document. However, all

previous research had been conducted on desktop com-

puters, where screen readability issues were not as much of

problem. The initial inclination was to apply a tiered

weighting system according to the reading time averages

reported by Claypool [28] (Fig. 6). The weights for each

metric were chosen on an ad-hoc basis, mainly through

consultation with the main experiment’s control group

subjects and their observed interactions with the system.

From the figure below, it becomes immediately obvious

that there is quite some overlap between the distributions of

reading times for each explicit rating, something which

makes it difficult to accurately infer document relevance

from reading time alone, in most cases. After experimen-

tation (described in Sect. 7), it was decided also that these

average reading times were completely irrelevant to the

handheld device environment. In fact, it was discovered

that no distinct correlation could be made between reading

time and document relevance on a handheld device, so the

decision was made to abandon this metric completely.

6 Limitations of the system

We would have liked to be able to incorporate further

heuristics, such as pointer movement, highlighting of text,

book marking and scrolling in the document. However,

given the implementation was on a pocketPC platform,

programming pocket Internet explorer to trap such behav-

iors was not feasible. In addition, some of these heuristics

(e.g. scrolling) would not be reliably applicable, given the

lack of previous research on small screen devices for such

Table 2 Keyword score adjustment weights as used in the system

implementation

Weight Value

a –0.03 (document not opened)

+0.03 · 7 (document opened)

b –0.021 (summary not viewed)

+0.021 (summary viewed)

c –0.15 (feedback = 1)

–0.075 (feedback = 2)

0.00 (feedback = 3)

+0.15 · 6 (feedback = 4)

+0.15 · 7 (feedback = 5)

e Inconclusive
Fig. 6 Claypool’s findings on relevance and reading time correlation

Pers Ubiquit Comput

123

measures. Indeed, further on, we describe how we were

forced to also exclude reading time from our heuristics.

Further more, we decided not to pre-cache images or other

media (pdf, word), purely for reasons of storage space

constraints.

7 Experimentation

7.1 Experiment design

Having implemented a full system, as detailed in the pre-

vious section, it was time to test its performance and

determine whether the hypotheses proposed by this thesis

could actually be met. Ideally the system should be given

to several users and they should be allowed to run it for a

period of time which should be as long as possible. How-

ever, given the lack of volunteers that would be willing to

run the experiment as part of their everyday routines and

also given disproportionately large timescale the experi-

ment would take, a decision was made to test the final

system under supervised conditions which would simulate

real world scenarios as closely as possible.

Two groups of users were given the same scenario with

some details of their imaginary living location, job and a list

of some names of people and how they would be related to

them. Furthermore, over the duration of 3 weeks, the users

would be given five tasks per week that form their hypo-

thetical schedule of activities for that week. These activities

were given in the form of a calendar entry that contained a

title, location and notes for each one. Some activities did not

contain items in the location or notes fields, as they were

based on real-world entries that we had collected in previous

studies. The users were also given clear instructions on the

exact meaning of each entry, through the provision of

accurate descriptions of the entries.

The users were then allowed to freely navigate through

the pre-cached content that was fetched for these hypo-

thetical schedules, and try to locate content that they

thought might be helpful to them. We would also ask the

users to give an indication of whether they found the

provided content for each activity useful.

It was decided that the users should not be told that their

behaviours would be logged. Also, one of the groups would

have their logs analyzed and we would attempt to provide

them with content that was personalized on the basis of

these logs. Again, the groups would not be made aware of

this discrepancy until after the experiment had ended. The

analysis of the logs was done automatically by the system,

for each of the monitored subjects individually. Their

respective profiles were maintained and updated at the end

of each session, therefore influencing the retrieval process

to personally match each of the monitored group’s subjects.

Finally, another factor which was considered in the

experiment, was that the physical storage limitations for

the devices used led to a choice to pre-cache only HTML

documents, and furthermore, these were restricted to the

documents proposed by Google for each search. Effec-

tively this meant that the retrieval tree was limited to just

one level. For a first-level document that contains three

hyperlinks, a two-order retrieval means a total of three

documents retrieved. The amount of generated documents

from just the one-level tree was very large and this would

only grow further with the implementation of additional

levels. Therefore, in order to avoid overloading the user

with documents and to overcome storage limitation prob-

lems, the choice was made to restrict the retrieval tree to

just one level. Further to this, the focus was placed on the

four most popular categories, according to the findings of

the query test. Therefore the calendar sets given contained

only entries of type Meeting, Travel and Social (including

birthday)

7.2 Initial experiment setup

An initial group of ten subjects volunteered to test the

system before we proceeded with the actual experiment.

All of the subjects were from a similar background and

considered themselves computer literate, although most did

not have previous experience with a PDA. The initial group

was given different, but similar in context, data than those

that would participate in the actual experiment; however,

the rules of the experiment were the same, apart from the

duration of the experiment, which would only encompass

the virtual timeframe of 1 week. The goal of this initial

experiment was to ensure the system ran smoothly with

users that were unfamiliar with it. A further, and more

important goal, was to observe the average reading times

for the web documents and their relation to explicit feed-

back, as we planned to use this metric for implicit rele-

vance feedback.

Having analysed the results of these initial groups, it

was observed that the average reading times were not what

we expected, and were certainly in contrast with previous

research such as that mentioned in Sect. 5.6 (Fig. 7).

It is clear from this graph that the users take, on average,

the same amount of time to distinguish between either

relevant or largely irrelevant documents. Therefore it is

apparent that the use of time as a metric is not a reliable

source of information, since there is not much significant

discrepancy between the average reading times for each

feedback score. This observation brought about the deci-

sion to eliminate this metric from the weight recalculation

formula, as it is in contrast with other findings, such as

those by Morita [29] and Claypool [28], but seem to con-

firm Kelly’s [30] conclusion that reading time is an unre-

Pers Ubiquit Comput

123

liable source for implicit relevance feedback. While our

research and that of Claypool’s use scales of 1–5, Kelly

uses a scale of 1–7. However, what is more interesting than

the direct comparison of observations is the fluctuation

between these (Fig. 8).

7.3 Actual experiment

For our actual experiment, two groups of ten people each

were used. The rules were applied in full this time and we

were able to obtain some interesting results at the end of

the experiment. Unfortunately, due to data corruption on

the logs of two members of one group, we were forced to

exclude them from the analysis, removing also two random

members from the other group, to make the figures directly

comparable.

In the following graphs, a representation of the average

reading times for both groups, over the three experiment

weeks is depicted (Fig. 9).

The trend shown here is slightly different from the re-

sults of the initial group. This is expected as the data for the

two groups were not the same. However, again from this

graph one can clearly see that determining a relationship

between feed back and reading time is not feasible. The

average reading times for the top two and the worst mark

are very close, making any secure distinction between the

two almost impossible. Further to this, it is surprising that

the group behaviour for all 3 weeks shows similar trends.

This finding seems to confirm our suspicion that average

reading times are strongly dependent on each individual

test group characteristics and cannot thus be easily gener-

alized.

Further analysis of the results should show whether

there is a trend in the improvement of cache hits for the

group whose data was tuned according to their previous

logs. The following two tables show the numerical and

percentile quantities of the opened documents (cache hits)

versus the total documents offered.

From Table 3, 4 one can clearly see an almost linear

trend developing for group 1, who were the group that had

their data adjusted according to their logs. This is a strong

indication that for these users, the system provides an

improvement in potential efficiency, if one considers that

opening a document indicates the user’s potential interest

in it. For group 2, a solid conclusion cannot be made, as the

percentage rates seem to fluctuate almost randomly,

Initial group average reading times vs. feedback

17208,33

27560,00

34114,29

17627,45
20340,43

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5
Feedback

A
v.

 r
ea

d
in

g
 t

im
e

Fig. 7 Initial group average reading times versus feedback ratings

Average Reading time vs. Document Rating

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7

M
ill

is
ec

o
n

d
s

Komninos

Claypool

Kelly

Fig. 8 Studies on average document reading times (ms) versus

perceived document usefulness

Average document reading times vs explicit rating

0

5000

10000

15000

20000

25000

1 2 3 5

Explicit rating

R
ea

d
in

g
 t

im
e

Week 1

Week 2

Week 3

Fig. 9 Experiment group average reading times versus feedback

ratings

Table 3 Total documents versus opened documents (%)

Group 1 (%) Group 2 (%) Joint (%)

Week 1 8.6 24.4 16.5

Week 2 16.5 18 17.7

Week 3 24.8 30.5 27.8

Pers Ubiquit Comput

123

affecting of course the joint outcome as well. It would

appear that for this group, the nature of the entries in their

given schedules is the only determinant in the percentage

of documents opened. For group 1 however, it appears that

the application of interest indicators found in previous logs,

has a restraining effect to the fluctuation of the variation in

percentages and an overall effect that shows increased

performance of the system.

As mentioned in Sect. 5, a further indicator of interest in

a document is its summary. A look at how many documents

were judged by the summary reveals the following results

(Table 5):

The percentages compare each figure with the total

number of opened documents. From these trends we see

that approximately only one in four times did the users

consult the summary before making a decision. This sug-

gests that a user will be inclined to navigate to a website

based on the information contained in its title solely. A

higher percentage was expected in this situation, especially

since visiting a document is costly (in terms of loading and

reading time) and also because in the implementation,

explicit feedback was requested after each user had fin-

ished reading. According to Nielsen [27] also, users tend to

like summaries and will read them before resuming with

the rest of the text. However, it must be noted here that the

summaries were only displayed on demand, while the

document titles were immediately available. This was a

necessary tradeoff in order to reduce the scrolling required

for the retrieval results overview, although the action of

opening a summary incurs an additional cost to the sub-

jects.

Finally, the following Table 6 takes a look at the average

document scores for each session:

It would appear from this table that the scores remain at

a constant level and in fact, at around the middle of the

scoring table. This in turn is consistent with the results by

Jansen [26], where it is mentioned that users should expect

one of two web documents they view to be relevant.

The choice was made not to measure the individual

scores attained by each group in order to establish a trend.

These would be actually just measuring the ability of

Google to return relevant results, where as this research is

only concerned with measuring the relevance of the web

query in the context of the calendar entry and the user’s needs.

7.4 Further discussion

7.4.1 Experimental environment

The experiment was performed in a quiet room. This set-

ting might not appear to be realistic in the sense that there

were no external distractions for the subjects, although they

were given food and drink and were allowed to commu-

nicate and interact with each other. Mobile devices are

used in both mobile and stationary environments and since

the experiment shows that reading times are not long

(around 25 s), it is expected that a mobile user could easily

dedicate such small times to interact undisturbed. I per-

ceive the notion of ‘‘mobile’’ to mean ‘‘out of office’’

rather than ‘‘walking’’ or ‘‘driving’’, therefore the setting

seems adequate for the purposes of the experiment. In any

case, a maximum time limit of 2 min, based on the

observations from an initial test group, is imposed on the

measuring to eliminate gross inaccuracies due to user dis-

traction. Therefore it can be concluded that the environ-

ment settings for the experiment were appropriate for its

purposes and did not deduct from its credibility.

7.4.2 Statistical confidence

Further to the results of the test, a two-paired t test was

conducted in order to investigate the statistical significance

Table 4 Total documents versus opened documents (absolute val-

ues)

Group 1 Group 2 Joint

Total Opened Total Opened Total Opened

Week 1 1464 127 1,464 357 2,928 484

Week 2 1,879 31 1,880 357 3,759 667

Week 3 1,065 264 1,248 381 2,313 645

Table 5 Summary viewing as a deciding factor for opening a doc-

ument

Group1 Group2

Immediate

Open

After

summary

Immediate

Open

After

summary

Week 1 90 (65.6%) 37 (34.4%) 255 (71.4%) 102 (28.6%)

Week 2 282 (90.9%) 28 (9.1%) 252 (70.6%) 105 (29.4%)

Week 3 209 (79.1%) 55 (20.9%) 205 (53.8%) 86 (46.2%)

Joint

Immediate open After summary

Week 1 345 (71.3%) 139 (28.7%)

Week 2 534 (80%) 133 (20%)

Week 3 504 (78.1%) 141 (21.9%)

Table 6 Average document scores (0 lowest, 5 maximum)

Group 1 Group 2 Joint

Week 1 2.26 2.37 2.44

Week 2 2.60 2.38 2.48

Week 3 2.49 2.36 2.42

Pers Ubiquit Comput

123

of the findings that were observed, in relation to the

improvement of cache hit-rate improvement for the two

groups. The t test was the recommended approach as the

experiment dealt with two groups of different subjects, who

came however, from a homogenous background, for one of

which an external factor was applied and its effect was

observed. This external factor was the monitoring and

consideration of interaction and feedback behaviour, and

its implication in the retrieval process.

The cache hit rates between week 1 and 3 were mea-

sured for each individual subjects and their difference was

analysed. The findings of the t test are summarised in

Table 7. With a statistical probability of error of approxi-

mately 1.2% when considering whether the external factor

was indeed responsible for the cache hit-rate improvement,

the credibility of the results is further enhanced.

7.5 Summary of findings

Several important conclusions were reached by this exper-

iment. Firstly, the system shows that useful Internet content

can indeed be pre-cached based on calendar information

alone. This is shown by the cache hit rates, which rose close

to 30%. Another important finding was that the reading

behaviour of the subjects when faced with documents on a

small screen, showed that the time spent on a document does

not accurately reflect the quality of the document. A corre-

lation between these two cannot be established, therefore the

use of reading time for implicit relevance feedback on small

screen devices is not recommended. Finally, and perhaps

most importantly, the results of this experiment show a

gradual, almost linear improvement of the retrieval perfor-

mance for the group whose behaviours were taken into ac-

count. Although the duration of the experiment could have

been longer, the statistical confidence is such that it can be

argued that the results are solid enough to provide adequate

confirmation of a promising learning curve performance.

8 Discussion and future work

We described a pre-caching system which is based on the

information found in electronic calendars, in order to

provide useful content for a user with a small mobile

computing device. While such a system in its own right

would not be able to completely satisfy all of a user’s

internet content needs or desires, we show that this system

it can indeed provide useful content for the appropriate

entry categories. Even in the case of entries where the

information contained therein comprises of a single word,

the automatic generation of web queries based on common

knowledge and the users’s preferences proves to be able to

provide meaningful and useful content.

While in this instance we chose to focus on the con-

textual information that could be obtained from electronic

calendars, it is possible to foresee an expansion of the

system which may make use of additional sources of

information. Some examples could be the scanning of a

user’s email inbox, SMS inbox or instant messaging

backlogs for information on upcoming activities. It is

common these days that meetings are arranged through

email and tasks are also delegated through this medium.

Thorough analysis of email messages would require a

careful natural language processing, we believe that such a

process would be a very valuable source of information.

Given the opened document trends as described previ-

ously, we have reason to believe that our system is able to

adapt accordingly to the individual preferences of a user. A

further trial over an extended period of time, preferrably

over 6 months, would be able to show the fluctuation be-

tween improvement rates and whether a peak is reached,

which would indicate the system’s optimum performance

level. A foreseeable problem with our current system is

that the current adaptation algorithm adjusts the system

gradually, and not abruptly, to the needs of a user. Thus, if

a dramatic change of circumstances was to occur, or if a

user was to require information from a very specific and

known source, it is likely the system would fail to provide

the necessary information. To that extent we programmed

the system so that if a calendar entry contained a website

address in the Notes section, that URL would automatically

be pre-cached. However, our interest focussed on the

adaptability algorithm and the usefulness of calendar en-

tries as a source of contextual information, thus our

experiment did not include the usage of this convenience.

Further to this, the system currently lacks the ability to

automatically add keywords to its knowledge base. Such an

inclusion, we believe, would help dramatically in the

improvement of the system’s performance.

Apart from the findings that were part of our main target,

we encountered several other interesting facts. The simi-

larity between decision times for judging positively or ex-

tremely negatively against a document prohibits the use of

such a metric from any further studies. Further to this, we

were also impressed by the low reading times, which are in

stark contrast with other studies that are concerned with the

average reading time of a web document, such as [28, 29].

Other studies report average reading times closer to the ones

Table 7 t Test results

Meana–Meanb t df

0.1003 2.4985 14

P

One-tailed 0.01277

Two-tailed 0.02554

Pers Ubiquit Comput

123

we experiences, but again higher [30, 31], although these

were not based on web documents. However, all of these

previous studies relate to documents viewed on a desktop,

where a large monitor facilitates the viewing of documents.

It is our assumption that the smaller reading times on the

handheld indicate a tendency for users to ‘‘skim’’ through

the document in order to decide on its usefulness. This

should be considered normal, given that the need for

immediate and full comprehension of the information in the

text was not there (due to the virtual environment). There-

fore the users would try to acquire a general ‘‘feel’’ for the

quality of the searches, and refer to these later on when they

have more time or immediately need the information.

Nielsen argues that scanning the text in a web document is

common practice. Further more, in his work, long pages that

cause lots of scrolling are considered to be largely disliked

by users. Since the limited size display on a handheld causes

websites to appear unproportionately large and causes lots of

scrolling, our findings of reduced reading times seem to be

further supported by these statements.

The reduction of used bandwidth was a starting point in

our thinking; however, starting from thinking about how

we could reduce the need for mobile bandwidth, we be-

came interested in examining calendars as a source of

contextual information. The significance of the findings of

this study do not relate solely to how bandwidth can be

reduced. Rather, with the discovery of patterns in elec-

tronic calendar use and the automatic de-ciphering of cal-

endar entries, one could proceed in solving other problems

in the usability of mobile devices, or invent new services.

(Yet) unpublished work that we have carried out draws

upon the categorization of entries to improve the usability

of calendars, firstly by implementing entry categories that

reflect those truly needed by users (most mobile devices

offer a categorization which is far too simplistic to address

real user needs). Also, based on the categorization, entries

could be colorized to carry layers of information such as

type of entry (meeting, to-do, etc.) and distance of event

from current location. This would enable a mobile calendar

to automatically adjust reminders, pre-fetch traffic infor-

mation or building service information (e.g. lift status).

Our work shows that de-ciphering calendar entries and

automatically discovering which category they fall under

can be used successfully in pre-caching Internet content.

However, the same technology can be used to solve other

real needs in mobile device interaction, such as augmenting

the usability of mobile calendars.

References

1. Balabanovic M, Shohav Y, Yun Y (1995) An adaptive agent for

automated web browsing. J Vis Commun Image Represent 6:4

2. Wang Z, Crowcroft J (1996) Prefetching in the world wide web.

In: Proceedings IEEE global internet conference, London

3. Cunha C, Jaccoud C (1997) International symposium on com-

puters and communication 97, Alexandria

4. Thiebaut D (1989) On the fractal dimension of computer pro-

grams and its applications to the prediction of the cache miss

ratio. IEEE Trans Comput 38(7):1012–1026

5. Palpanas T (1998) Web prefetching using partial match predic-

tion. In: Proceedings of the 4th international web caching

workshop, San Diego

6. Jiang Z, Kleinrock L (1998) An adaptive network prefetch

scheme. IEEE J Sel Areas Commun 16(3):358–368, 1–11

7. Jiang Z, Kleinrock L (1998) Web prefetching in a mobile envi-

ronment. IEEE Pers Commun 5:25–34

8. Chinen K, Yamaguchi S (1997) An interactive prefetching proxy

server for Improvement of www latency. In: Proceedings of

INET97, June 1997

9. Duchamp D (1999) Prefetching hyperlinks. In: Proceedings of the

2nd USENIX symposium on Internet technologies and systems,

Boulder, Colorado

10. Fan L, Jacobson Q, Cao P, Lin W (1999) Web prefetching be-

tween low-bandwidth clients and proxies: potential and perfor-

mance. In: Proceedings of the joint international conference on

measurement and modelling of computer systems (SIGMETRICS

99). Atlanta, Georgia

11. Pitkow J, Pirolli P (1999) Mining longest repeated subsequences

to predict www surfing. In: Proceedings of the second USENIX

symposium on Internet technologies and systems, October 1999

12. Schechter S, Krishnan M, Smith MD (1998) Using path profiles

to predict HTTP requests. In: Proceedings of the seventh inter-

national www conference. Brisbane, pp 457–467

13. Padmanabhan V, Mogul JC (1996) Using predictive prefetching

to improve www latency. ACM SIGCOMM Comput Commun

Rev 26(3):22–36

14. Crow D, Smith B, Habits DB (1992) Comparing minimal

knowledge and knowledge-based approaches to pattern recogni-

tion in the domain of user-computer interactions, neural networks

and pattern recognition in human computer interaction. Ellis

Horwood, New York, pp 39–63

15. Swaminathan N, Raghavan SV (2000) Intelligent pre-fetching in

www using client behaviour characterization. In: Proceedings of

the eighth international symposium on modeling, analysis and

simulation of computer and telecommunication systems (MAS-

COTS)

16. Foygel D, Strelow D (2000) Reducing web latency with hierar-

chical cache-based prefetching. In: Proceedings of the interna-

tional workshop on scalable web services (in conjunction with

ICPPO), Toronto

17. Davison B (2002) Predicting web actions from HTML content.

In: Proceedings of the 13th ACM conference on hypertext and

hypermedia, College Park, pp 159–168

18. Zhang W, Lewanda DB, Janneck CD, Davison BD (2003)

Personalized web prefetching in Mozilla. Technical report LU-

CSE-03–006, Department of Computer Science and Engineering,

Lehigh University

19. Davison B (2004) Learning Web Request Patterns. In: Poulo-

vassilis A, Levene M (eds) Web dynamics: adapting to change in

content, size, topology and use. Springer, Heidelberg

20. Cohen E, Kaplan H (2000) Pre-fetching the means for document

transfer: a new approach for reducing web latency. In: Proceed-

ings of the 2000 IEEE INFOCOM conference. Tel-Aviv, pp 854–

863

21. Komninos A, Dunlop MD (2003) Towards a model for an In-

ternet content pre-caching agent for small computing devices. In:

Proceedings of the 10th international conference on human

computer interaction (HCII2003), Crete

Pers Ubiquit Comput

123

22. Kincaid CM, Dupont PD, Kaye AR (1985) Electronic calendars

in the office: an assessment of user needs and current technology.

ACM Trans Off Inf Syst 3(1):89–102

23. Appelt D, Israel DJ (1999) Introduction to information extraction

technology. Int J Commun Artif Intell 12:161–172

24. Komninos A, Dunlop MD (2004) Keyword based categorisation

of calendar entries to support personal internet content pre-

caching on mobile devices, 2nd international workshop on mobile

and ubiquitous information access (MUIA04), in conjunction

with Mobile HCI04. Glasgow

25. Jansen BJ, Spink A, Bateman J, Sarasevic T (1998) Real life

information retrieval: a study of user queries on the web. ACM

SIGIR Forum 32(1):5–17

26. Jansen B, Spink A (2003) An analysis of web documents re-

trieved and viewed. In: Proceedings of the 4th international

conference on Internet computing. Las Vegas, pp 65–69

27. Nielsen J, Morkes J (1997) Conscise scannable and objective:

how to write for the web, http://www.useit.com/papers/webwriting/

writing.html. Link valid January 2005

28. Claypool M, Le P, Waseda M, Brown D (2001) Implicit interest

indicators. In: Proceedings of the 6th international conference on

intelligent user interfaces (IUI ‘01), USA, pp 33–40

29. Morita M, Shinoda Y (1994) Information filtering based on user

behavior analysis and best match text retrieval. In: Proceedings of

the 17th annual international ACM SIGIR conference on research

and development in information retrieval. Ireland, pp 272–281

30. Kelly D, Belkin N (2001) Reading time, scrolling and interaction:

exploring implicit sources of user preferences for relevance

feedback. In: Proceedings of the 24th annual international ACM

conference on research and development in information retrieval.

New Orleans, pp 408–409

31. Kelly JD (2004) Understanding implicit feedback and document

preference: a naturalistic user study. PhD Thesis, State University

of New Jersey

Pers Ubiquit Comput

123

	A calendar based Internet content pre-caching agent �for small computing devices
	Abstract
	Introduction
	Motivation and current pre-caching techniques
	Limitations of current research
	A predictive pre-caching system for mobile devices
	The pre-caching system
	Overview
	Identifying keywords
	Formulating queries based on keywords
	Pre-caching documents
	Mobile component
	Presenting results
	Processing relevance feedback

	Processing relevance feedback

	Limitations of the system
	Experimentation
	Experiment design
	Initial experiment setup
	Actual experiment
	Further discussion
	Experimental environment
	Statistical confidence

	Summary of findings

	Discussion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

