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ABSTRACT 
To address the problem of improving text entry accuracy in mobile 
devices, we present a new tablet keyboard that offers both 
immediate and delayed feedback on language quality through auto-
correction, prediction, and grammar checking. We combine 
different visual representations for grammar and spelling errors, 
accepted predictions, and auto-corrections. and also support 
interactive swiping/tapping features and improved interaction with 
previous errors, predictions, and auto-corrections. Additionally, we 
added smart error correction features to the system to decrease the 
overhead of correcting errors and to decrease the number of 
operations. We designed our new input method with an iterative 
user-centered approach through multiple pilots. We conducted a 
lab-based study with a refined experimental methodology and 
found that WiseType outperforms a standard keyboard in terms of 
text entry speed and error rate. The study shows that color-coded 
text background highlighting and underlining of potential mistakes 
in combination with fast correction methods can improve both 
writing speed and accuracy.  
 

Keywords: Text entry; predictive text; virtual keyboard; 
touchscreen; auto-correction; error correction; error detection; 
backspace. 

CCS Concepts: Human-centered computing → Text input; 
Human-centered computing → Touchscreens; Applied computing 
→ Text editing  

1 INTRODUCTION 
Today, the use of touchscreen text entry extends from short text 
messages to longer emails and blog posts, where the latter 
categories require more formal writing and text entry errors are less 
tolerated. Yet, many touchscreen users encounter problems during 
text entry, especially when entering longer text passages. One of the 
challenges is the limited speed of text entry on touchscreens, which 
is substantially slower than physical keyboards and well below the 
inviscid text entry rate where the keyboard ceases to be a barrier to 
communication speed [28]. An even more notable challenge is the 
reduction of writing errors during text entry, which can be 
frustrating with correction considerably compromising entry (e.g., 
[4]). Mobile device manufacturers address spelling errors by 
providing auto-correction and adding various forms of predictive 
text entry. However, auto-correction can lead to confusing or 
embarrassing inadvertent mistakes and many users turn off auto-
correction features [6,33], presumably because they perceive mis-
corrections as overly annoying. Our research attempts to ameliorate 
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these issues through a virtual keyboard that includes both a spelling 
and a grammar checker, provides augmented visualization for 
previous automatically or manually corrected errors, and enables 
smart swipe and tap features to speed up the error correction 
process. Our main goals are a) to better inform users about 
automatic changes to the inputted text that may occur during text 
entry and b) to decrease the overhead of correcting errors without 
negatively affecting typing speed. 

In our new input method, we extend the concept of highlighting 
spelling mistakes to increase user awareness, as shown in [26], 
through color coding for spelling and grammar mistakes. We show 
errors with attention-grabbing colors, such as red and orange, for 
spelling and grave grammar mistakes, respectively, while more 
neutral colors, such as blue and gray, are used for auto-correction 
results and accepted predictions. This new input method is designed 
to help users to spot mistakes, identify their cause easily, and then 
enable them to quickly go back and edit the text, without slowing 
down the text entry speed.  

After the discussion of related work, we present the results of four 
studies: three pilot studies (N1 = 7, N2 = 9, N3 = 9) to refine 
feedback and experiment design, and a main study (N = 12) on the 
effect of our novel approaches on text entry behavior. 

2 RELATED WORK 
Text entry assistance like auto-correction is important for fast text 
entry and efficient communication between text message users [10]. 
Such assistance is beneficial when it works as expected. However, 
it can also cause significant communication problems when it fails 
[10]. Moreover, the cost of error correction can also be high [5]. 

Error correction has been shown to be particularly important on 
touchscreens with small keys (e.g., [29]) and was seen as one of the 
challenges for intelligent text entry [45]. However, auto-correction 
errors, such as failures of current correction mechanisms, are widely 
discussed in the press as a problem of modern mobile text entry 
(e.g., [49]) and can lead to unintended messages being sent. 

Support for error awareness and correction have been identified 
as a strongly desired feature in smartphone keyboard design studies 
[25], especially for older adults (e.g. [26]) and children (e.g. [7]).  

There are several studies that introduce innovative text entry 
methods, such as key-target resizing keyboards (e.g., [21]), gesture 
keyboards (e.g., [1,11,34,40,52]), tap-stroke hybrid keyboards (e.g., 
[3]), keyboards with alterative layouts (e.g., [12,16,51], and 
keyboards that adapt to the hand posture (e.g., [9,19]). However, the 
focus is usually either on novel devices/techniques or on speed – 
but not on error correction. 

Predictive systems can support effective error correction and 
completion of partially entered words if an appropriate language 



model is used [18]. Some systems also provide phrase prediction 
while writing (e.g., [8]). Word prediction and showing keystrokes 
could save up to 45% keystrokes in mobile keyboards [18], but this 
promise is rarely transferred to a corresponding increase in typing 
speed due to the higher cognitive load for handling word 
completions [15,24,39]. Other systems, such as the Smart-
Restorable Backspace [2], suggest text that was previously written 
or deleted by the user to help them recover faster from mistakes.  

2.1 Text Entry Evaluation 
Allowing participants to type whatever they want in user studies 
may seem to be a desirable approach, as it replicates natural user 
behavior. However, this confounds experimentation, as there is a 
lack of control for performance measurements [32]. Accuracy is 
difficult to calculate since there is no source to compare the written 
text with [32] and users may “game” the experiment by entering 
gibberish or many short, easy words. Hence, although alternative 
text entry tasks have been proposed (e.g., [35,49]), the standard 
procedure in lab-based test entry studies is to show participants pre-
selected phrases one at a time and ask them to transcribe them [40].  

To increase comparability between studies, standard phrase sets 
are often used. As the primary metric of text entry studies is input 
speed, most studies use phrases that are relatively short, easy to 
remember, and representative of the target language. The most 
common phrase set in studies is from MacKenzie and Soukoreff 
[32]. One issue with these phrases is that they have not been written 
by mobile device users and do not look like actual mobile messages 
[48]. The MobileEmail collection [48] contains emails written on 
mobile devices. Of particular importance is the memorable phrase 
sub-set that has been tested for memorability in transcription tasks. 
To simplify the study procedures and to eliminate any potential 
confounds, phrase sets usually do not contain punctuation symbols, 
and require a few or no uppercase letters. Further, participants are 
often instructed to ignore uppercase letters and enter all text using 
lowercase. Mobile phrase sets also have higher proportions of 
sentences in the first person and sentences that are questions [48]. 

In the literature, there are three approaches to error correction 
conditions in text entry user studies: no error correction required, 
recommended, and forced error correction [4]. In the first condition, 
participants are not required to correct errors. In the second, 
participants are recommended to correct errors as they spot them. 
With the third condition, participants are forced to correct all errors 
in order to proceed to the next phrase. Typically, error rates are very 
low (e.g., [28]) in laboratory text entry studies, even on very small 
screens (e.g., [20]), as users tend to pay close attention and trade off 
speed for correctness. In our work, we used the second condition, 
where we recommended to participants that they correct errors, 
since we wanted to compare the text accuracy with our auto-
correction method augmented with visual feedback and typical 
auto-correction without feedback. 

3 MOTIVATION 
As discussed above, errors are costly in time, effort, and user 
perception of text entry quality, yet autocorrect is only a partial 
solution. Recent research suggests that increasing the visibility of 
suggestions can increase both perception and interaction costs, 
which could reduce text entry speed (e.g., [23,30,38,39]) and in 
some cases seems to eradicate all benefits in writing accuracy [8]. 
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Offering multiple choices for corrections can give users more 
freedom. This could provide notable benefits, because it gives users 
the flexibility to deal with a wide range of needs and situations and 
also helps users who benefit from good modality choices [37]. In 
other cases, offering multiple choices for corrections might lead to 
less favorable results with users who make bad choices, who then 
also prefer systems that offer limited interaction possibilities [23].  

Our goal is thus to find a reasonable combination of methods that 
helps users identify and manage errors, while still increasing 
average typing speed. We formulated the following research 
question to drive our work in this paper: Does the combination of 
more assertive error visualizations with fast correction methods 
improve writing speed and accuracy in text entry? 

4 EXPLORATORY STUDIES 
Our design goal was to create an interface that avoids overloading 
users visually, while at the same time making it easier to spot 
grammatical and spelling errors, and (potentially incorrect) auto-
corrections. We used an iterative design process to carefully 
evaluate our design choices for the keyboard in pilot studies to pick 
the most effective features. We then evaluated the final prototype in 
a full user study. The exploratory studies were: 

1. Study of initial error visualizations; 
2. Study of revised error visualizations; 
3. Pilot comparison of WiseType with standard keyboard. 

 
Following a previously used data collection approach [27]. we 

used a set of phrases randomly chosen from a set of user reviews of 
local venues, submitted to FourSquare6, written in English, in these 
pilots. We analyzed phrases using the LanguageTool.org grammar 
checking API with the following rules enabled: Collocations, 
Commonly Confused Words, Core Grammar, Nonstandard Phrases, 
and Possible Typo. We then manually scanned phrases to exclude 
those where either the errors were minor or arguable, or where there 
were undetected errors. We then further filtered the set to arrive at 
two collections of phrases: clean, with zero errors, and problematic, 
with one or two grammatical errors per phrase. 

4.1 First Pilot Study: Highlighting  
The aim of this study was to collect user opinions about the first 
iteration of WiseType, which highlighted all mistakes, auto-
corrections, and predicted words in different colors (see Figure 1). 
Here, warm colors (red and orange) are used to warn about serious 
and minor writing errors, while cool colors (shades of blue) reflect 
system-generated corrections, which might be potentially incorrect.  
 

 
Figure 1: The visual feedback used in the first pilot study. 

 
We recruited 7 participants (6 female) for this pilot. Each 

participant entered 10 phrases from the above set, all of which  
contained grammatically incorrect English. We suggested that 
participants correct the writing errors, but we did not force 
correction. At the end of this session, we conducted a semi-
structured interview to ask them about the proposed visualizations 
and elicited additional suggestions. The whole session lasted 30 

 



minutes. The results from interviews and observations revealed that 
the participants spent more time transcribing the phrases than usual, 
because they perceived highlighted auto-corrected and predicted 
words as mistakes, not as corrections. Some users even forgot what 
each color represented. This encouraged us to adopt a different form 
of visualization to better distinguish for potentially incorrect auto-
corrections than for other errors. 

4.2 Second Pilot Study: Highlighting and Underlining 
In this study, we aimed to validate the re-design with different forms 
of visual feedback for errors. We compared two approaches: 
underline only vs. the combination of highlight and underline 
(Figure 2). We recruited 9 participants for this pilot (8 female). Six 
participants reported that English is their second language. We 
counterbalanced the order of conditions. After 2 training phrases, 
each participant entered 10 phrases per condition and completed a 
pre- and post-session questionnaire. At the end, we conducted a 
semi-structured interview to ask about their perception of the design 
and their suggestions. Sessions lasted 30 minutes. The 
questionnaire and interviews showed that participants preferred the 
combined highlight and underline approach (Figure 2 bottom) and 
also remembered the meaning of each color well.  
 

 

 
Figure 2: The visual feedback used in the second pilot study. 

 

4.3 Third Pilot Study: Validation 
This pilot compared WiseType with a conventional keyboard. We 
recruited 9 participants (8 female). All participants had English as 
their second language and their mean IELTS score was 6.33/9. We 
used a within-subject design with two keyboard conditions 
(conventional and WiseType). We counterbalanced the order of 
conditions. After 2 training phrases, each participant entered 10 
phrases per condition and completed a pre- and post-session 
questionnaire. At the end, we conducted a semi-structured interview 
to ask about their perception of the design and their suggestions. 
Each session lasted 30 minutes. 

The conventional keyboard has the same buttons dimensions and 
response time as WiseType, and works like most touchscreen 
keyboards with auto correction enabled (but uses the same 
algorithm as WiseType), has a prediction panel with 3 options, and 
represents spelling mistakes through a red underline. Yet, it does 
not visualize errors. 

We measured the error rate (see section 7.3 for details) of the 
submitted phrases from our logging data. The mean number of 
writing errors with the conventional keyboard (M = 8.70, SD = 
5.85) was higher than with WiseType (M = 4.88, SD = 3.00) and 
this difference is statistically significant, F(1,26) = 16.784, p = .000, 
with medium to large effect size (Cohen′s dz) = 0.79 and study 
power (1-β) = 0.70. The data shows that writing errors decreased 
when using WiseType (see Figure 3). 

In the post-session questionnaire participants responded that they 
would use the new keyboard on their touchscreen devices, and they 
rated the overall experience with the keyboard positively: 7 
(77.78%) answered either “excellent”, “very good”, or “good”. 

 
Figure 3: Average Error Rate for both text entry conditions (y-axis 

represents percentages). 

5 THE WISETYPE KEYBOARD 
The pilot described above identified that our approach can 

improve writing accuracy, but our work aims to improve writing 
speed as well. Thus, we added a feature which allows users to tap 
on highlighted/underlined words to correct them via a context menu 
and measured the typing speed in the main study. We also noticed 
that the phrase set used in the pilot contained slang and unfamiliar 
words (where participants even asked the observer for meanings), 
which created confusion and reduced entry speed. The Singapore 
SMS Corpus [14] has been similarly criticized for “strange 
language, abbreviations, and sentence fragments”, leading to 
confusion and high error rates [48]. Thus, we decided to change to 
the Enron MobileEmail phrase set [48] into which we selectively 
injected various errors (discussed below). 

 

 
Figure 4: WiseType Keyboard. 

 
WiseType was implemented as a web application using JavaScript 
and PHP. As stated above, we iterated on the design through 
multiple pilots. In the following paragraphs, we outline the final 
design and the inclusion of better mechanisms to support error 
detection and correction. 

5.1 Word Prediction and Auto-Correction 
WiseType includes standard predictive keyboard features, similar to 
the default Android text entry method. It displays a prediction panel 
above the virtual keyboard which show three candidate suggestions: 
the original text on the left, the most probable prediction in the 
center (highlighted with an underline), and the second most 
probable one on the right. As with other systems, WiseType allows 
users to choose the candidate word by pressing the space key or by 
tapping on the candidate word in the panel (see Figure 4). 

WiseType also triggers auto-correction for spelling mistakes and 
replaces a misspelled word with the most probable correct word. 
The auto-correction is triggered when the Levenshtein distance [31] 
between the inputted and the candidate word is a single operation. 



 
Figure 5: The visual feedback for the final WiseType design. 

5.2 Highlight and Underline 
Misspelled words are highlighted using colors that reflect the 
severity of the mistake: red for spelling mistakes and orange for 
grammar errors. Blue underlining is used to show instances of auto-
correction and gray underlining denotes instances where the user 
picked a word from the prediction panel (see Figure 5). The 
motivation for showing words that the users picked from the 
prediction panel is that the user might make a mistake while picking 
a prediction. With the gray underline the user can quickly see where 
he/she accepted predictions and then later go back and fix any 
mistake, if necessary, without having to re-read the whole text. 

Recently, some smartphone manufacturers added a context menu 
option to enable users to edit auto-correction mistakes7. Yet, this 
functionality is very limited as it only provides a single prediction 
and an option to undo auto-correction. WiseType instead offers up 
to six predictions, one of which un-does the auto-correction. 
Furthermore, WiseType makes it visually easier to identify 
(potential) errors (see Figure 6). As with other touchscreen 
keyboards, a tap and hold gesture on a character moves the cursor, 
while a simple tap on a highlighted/underlined word activates the 
context menu, as in Figure 6. 

Figure 6: The WiseType context menu for a grammar mistake is 
shown in the top left, the spelling mistake correction menus (similar 

to standard mobile spell correction) in the top right, our novel 
predicted word expansion in the bottom right, and the auto-correct 

adjustment menu in the bottom left. 
 
For misspelled words, WiseType allows users to add a non-

dictionary word into the dictionary by tapping on the word and 
choosing the “Add to dictionary” option from the context menu. 
Once a word has been added to the dictionary, the system does not 
consider it as a misspelled word in the future. To guard against 
errors in this operation, WiseType enables users to delete a 
mistakenly added word from the dictionary by tapping on a word 
and selecting the context menu entry that removes the word from 
the dictionary.  
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5.3 Super Swipe 
Smart deletion is automatically triggered when users perform a 
swipe-left gesture on the backspace key. WiseType will then delete 
the text right up to the last word with a grammar or spelling mistake. 
In contrast to previous work, the swipe technique in WiseType is 
applies to multiple errors: grammar and spelling mistakes. 

However, we noticed during the pilot that participants did not use 
this feature much. When queried as to why they had not used it, 
several said that they had forgotten about the feature. One 
participant recommended using a different icon to represent the 
swipe feature. Based on this idea, we changed the appearance of the 
backspace icon from the default one (see Figure 7). After deleting a 
chunk of text through the smart deletion feature, WiseType suggests 
text from the deleted chunk in the prediction panel. 

 

 
Figure 7: The super swipe button. 

5.4 Grammar Checker  
We used a cloud-based grammar checker, LanguageTool, which 
provides a JSON API8. LanguageTool’s response to input is an 
array of possible grammatical errors, each with an explanation and 
suggested correction. Since the phrases we used had no punctuation 
and were all in lowercase [32], we filtered all responses during the 
study to remove any errors related to punctuation and capitalization 
mistakes. Unlike feedback for spelling mistakes, which appears 
immediately, the grammar checker is invoked only after typing at 
least three words, since many grammatical errors need more context 
before being detectable. The two-word entry “The girls”, for 
example, cannot be checked grammatically until more text is 
written such as “…are over there” (correct) or “… was over there” 
(incorrect). As in this example, grammatical errors are thus often 
identified in earlier parts of a sentence relative to the current typing 
position, which causes them to be outside of the focus of attention 
for (at least some) users. This is a similar situation to some of the 
most powerful auto-correction algorithms, such as VelociTap [50], 
which perform best with the whole sentence to analyze – which 
again results in similar post-hoc corrections far from the typing 
position. WiseType deals with this issue by highlighting the 
grammatical errors with more attention-grabbing color (orange). 

6 MAIN EXPERIMENT 
The purpose of this study was to compare WiseType with a 
conventional predictive keyboard. Both keyboards are implemented 
in JavaScript using the same predictive and autocorrection 
algorithms, and the of the conventional keyboard has the same 
button dimensions and response time as WiseType. The 
conventional condition looks like most touchscreen keyboards, has 
auto correction, yet without any feedback when it changed a word, 
does not show grammar errors, has a prediction panel with 3 
options, and represent spelling mistakes with red underline. 

6.1 Apparatus 
We used a Microsoft Surface Pro 3, Intel Core i5 processor, 
29.21×20.14×0.91 cm, and 798 grams, with Windows 10 at 

 



2160×1440 resolution. The key dimensions were 80*90 pixels 
(21.2*23.8 mm). Figure 8 illustrates the physical setup. 

We used a tablet instead of smartphone because tablets are 
equipped with larger screens allowing easier viewing and typing. 
Tablets are typically used for activities that are centered around 
heavier text composition (e.g., email, social media) [47] and are 
often used in professional contexts where text entry accuracy can 
be critical (e.g., medical settings) [17,42,46]. Furthermore, using 
tablets helps isolate problems emerging from “fat-finger” concerns 
[43]. We specifically used a high-powered tablet to ensure that 
processing delays were not a limiting factor for our work. 

 

 
Figure 8: The physical setup used during the experiment. 

6.2 Design 
We used a within-subjects design with two conditions. In each 
condition, participants entered 23 phrases (46 phrases in total, 
excluding practice phrases). Hence, the design was: 

12 participants × 
    2 conditions (conventional and WiseType) × 

23 phrases  
= 552 total phrases, of which 50% (276) had grammar mistakes. 

Following standard text entry study practice, phrases were shown 
on screen to be copied. We used the phrases defined in section 6.6. 

6.3 Participants 
Twelve participants (8 female, 4 male) were recruited for the study 
through advertising to an undergraduate participant pool at SFU. 
Most were between 18 and 25 years old, with one between 25-35. 

In previous studies we observed that native speakers tended to 
correct minor grammar errors as they were typing in copy tasks and 
to ignore system feedback if they made mistakes. Thus, we 
purposefully selected a majority of participants whose first 
language was not English, with the intent of increasing the 
probability of copy-writing mistakes. Ten participants had English 
as a second language and two had it as their first language. The 
mean IELTS score for English as a second language participants 
was still fairly high (6.3/9), which can be explained through them 
being university students. All participants had prior experience with 
touchscreen-based text entry. Participants completed a consent 
form before participating in the experiment and were introduced to 
the general procedure of the study before performing the main tasks. 

6.4 Dependent Variables 
The study recorded participants’ entry speed, accuracy, and the total 
number of operations per character with WiseType and a 
conventional touchscreen keyboard, which looks and works like 
most touchscreen device keyboards with the auto-correction feature 
enabled. As with most touchscreen keyboards, the auto-correction 
method changes words without providing any noticeable feedback 

to the user. Only spelling mistakes are displayed to the user using 
red underlining. Our goal was to compare this type of support in 
terms of participants’ number of operations per character, text entry 
speed, and error rates with WiseType’s enhanced visual feedback, 
grammar correction, and smart correction features. As mentioned 
above, both conditions were based on the same core system, layout, 
underlying dictionary and autocorrection, with the only difference 
being the enhanced visual feedback and smart correction method. 
We measured performance in terms of speed and error rates. 

6.5 Procedure 
Before the study, participants were asked to fill out a background 
questionnaire about their age, gender, English proficiency, and their 
current touchscreen device keyboard experience, such as, whether 
text entry using their touchscreen keyboard hinders or improves 
their speed and writing accuracy compared to a physical keyboard. 

During the study, participants were asked to enter 46 phrases 
using the conventional touchscreen keyboard and WiseType 
conditions (23 phrases per each condition). When done, they were 
asked to complete a questionnaire, where they could rate and 
comment on the new keyboard. We correlated this data with 
observations collected during the experiment as well as insights 
gathered from a brief post-study interview. Each participant spent 
between 50 and 60 minutes with the task, depending on their typing 
speed. We offered breaks in between conditions, but almost all 
participants chose to continue with the sessions without breaks. 

6.6 Phrases and Error Injection 
As the pilot study identified problems with the phrased collected 
from social networks, we created a more controlled set of phrases 
as stimuli for our text copy task, based on the Enron phrase dataset 
[48]. The phrases selected were generally short to medium length 
ranging from 3 to 12 words (M = 6.1, SD = 1.68), containing from 
14 to 67 characters (M = 29.9, SD = 10.13). Still, they were easy to 
remember, a requirement identified by previous work [41]. 

Though tablets are often used for longer text entry, the use of 
transcription (which is the de-facto standard in text entry studies) in 
our experiment requires short, memorable phrases [40]. To the best 
of our knowledge, the use of longer text entry phrases has only been 
proposed in two papers, by asking users to compose text based on a 
scenario prompt [49] or by shortly describing an image presented to 
the users [35]. Although both studies have shown promise in the use 
of such evaluation tasks to replace the short phrase transcription 
task, these methods have not been validated by other work. 

We purposely injected grammar errors into 50% of the phrases. 
We added mistakes in prepositions, verb tense, agreement errors 
(live/life), singular/plural mistakes, do/does/did issues, and non-
infinitive verbs after modals. We shuffled phrases so that 
participants experienced a mix of unmodified Enron phrases and 
phrases with injected errors. Examples for injected errors include: 
“I does not know about it”, “We are looking for people who has 
expertise in this area”, “These people does not know the answer”, 
“Today we still are fly to space”, “We regularly moving a 
conversation from the forum to email” and “I life in Moscow”.  

In line with transcription-based text entry studies, participants 
were shown phrases one a time and recommended to type them 
quickly but accurately. They were further instructed to correct any 
errors they could identify in the phrases. We decided to exclude 
punctuations in the study, because non-alpha characters introduce a 
potential confounding source of variation in the dependent 
measures, and threaten internal validity [32]. 



7 RESULTS 
We used a repeated-measures ANOVA with alpha of 0.05 for all 
analysis. A Shapiro–Wilk test identified that the assumption of 
normal distribution was satisfied and all other preconditions of 
ANOVA were also met. 

7.1 Pre-Study Questionnaire Responses 
The results of the pre-session questionnaire showed that nine (75%) 
of all participants had predictive systems, i.e., word prediction and 
auto-correction, enabled on their either smartphones or tablets. Nine 
(75%) of all participants responded that their primary mobile 
operating system was Apple iOS, while three (25%) used Android. 

Figure 9 shows the responses of the participants for how they 
perceived the text entry speed and their typing accuracy with their 
own, current touchscreen keyboard. 

	

	
Figure 9: Perception of participants for typing on the touchscreen 

keyboard of their own device. The majority of participants indicated 
that their own devices reduce their typing speed and accuracy. 

Likert scale questions on the y-axis and percentages on the x-axis. 
 

Figure 10: The participants responses on auto-correction, word 
prediction and their spelling/grammar proficiency when using their 

own touchscreen keyboard. Likert scale questions on the y-axis and 
percentages on the x-axis. 

 
We asked participants to rate the word prediction feature of their 

current mobile keyboard. The majority of participants rated the 
word prediction as fair, with the remainder spread across the scale. 
Figure 10 shows the responses of the participants for the questions 
about auto-correction, word prediction, and spelling/grammar 
proficiency when using their own touchscreen keyboard. 

7.2 Overall Entry Speed 
In line with common text entry study protocols, we used words per 
minute (WPM) metric to measure entry speed [4]. Time was 
measured from the first keystroke to the last. 

There was significant effect on entry speed, F(1,11) = 10.825, p 
= .007, with a large effect size (Cohen′s dz = 3.052) and high power 

(1-β) = 1.0. Mean entry speeds for the conventional and WiseType 
conditions were (M = 16.76, SD = 4.10) and (M = 19.87, SD = 
4.89), respectively. Figure 11 illustrates the average entry speed for 
both conditions. 

 

	
Figure 11: Average entry speed in Words per Minute 

(WPM) for both conditions. 

7.3 Error Rate 
To analyze the correctness of the final submitted text, we used the 
Error Rate (ER) metric [4]. To calculate ER we compared the 
transcribed phrases with correct ones. While we initially considered 
using only pre-determined correct phrases, we realized that there 
were several instances where there were multiple, alternate valid 
corrections, such as “Peter did go” or “Peter went”. Thus, we 
checked the transcribed phrases with two independent reliable 
grammar/spelling checker services (LanguageTool and MS Word) 
to determine the final ER. For consistency with other work, we 
ignored all punctuation and capitalization errors. 

The mean number of writing errors with the conventional 
keyboard (M = 4.52, SD = 2.09) was higher than with WiseType (M 
= 1.42, SD = 1.02) and the difference was statistically significant, 
F(1,11) = 21.27, p = .001, with a large effect size (Cohen′s dz = 
1.33) and high power (1-β) = 0.996. Figure 12 illustrates the average 
error rate for both conditions. 

 

	
Figure 12: Average Error Rate (ER) for both conditions 

(y-axis represents percentages). 

The final submissions, however, do not show all errors, as users 
often correct their typing mistakes, and in our case grammar errors, 
as they type. Corrected errors typically impact typing speed as users 
need time to correct such errors. To gain a detailed view of how 
much error correction users performed, we analyzed the Operations 
per Character (OPC) metric, which is the average number of 
operation needed to input a single character [2]. This metric is 
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similar to Keystrokes per Character (KSPC), the ratio of the length 
of the input stream to the length of the transcribed text [4]. The 
mean of the number of keyboard actions with WiseType (M = 1.26, 
SD = 0.14) was lower than with the conventional keyboard (M = 
1.55, SD = 0.25). The difference is statistically significant, F(1,11) 
= 16.94, p = .002, with a large effect size (Cohen′s dz) = 1.20 and 
high power (1-β) = 0.987. Figure 13 illustrates average OPC for 
both conditions. 
 

	
Figure 13: Average Operation per Character (OPC) for 

both conditions. 

Finally, and for measuring error rates, we had observed in 
previous studies that users sometimes naturally “correct” unusual 
wordings in standard text collections. Although this experiment was 
not designed explicitly to compare native and non-native speaker 
behaviors, we observed that non-native speakers did tend to trust 
the WiseType feedback more than native speakers. In some 
instances, native speakers saw the orange highlight, which 
represents a grammar mistake, but did not fix the errors. In post-
session interviews, they said they felt that the grammar mistake 
detection was not accurate, i.e., that there was no mistake even 
though there were clear grammatical errors. One of the common 
errors that native speakers overlooked is the use of “the”, for 
example in “Avoid dudes, [the] worst service…”. 

7.4 Usage of the Prediction Methods 
We observed a significant decrease in the use of regular backspace 
characters with WiseType, F(1,276) = 41.71, p < .001. The mean 
number of backspace characters in the conventional and WiseType 
conditions were (M = 7.32, SD = 7.64) and (M = 3.74, SD = 5.15), 
respectively. Figure 14 shows the average number of backspaces 
used for both conditions.  

The occurrence of auto-correction while using the conventional 
keyboard ranged from 0 to 7 times per task (M = .60, SD = 1.02), 
with 78% being correct auto-corrections and 22% incorrect ones. 
The occurrence of auto-correction while using WiseType ranged 
from 0 to 4 times per task (M = .42, SD = .71), with 81% correct 
auto-corrections and 19% incorrect ones. This means that we 
observed that about 1 in 5 auto-corrects were incorrect. The usage of 
the prediction panel while using the conventional keyboard ranged 
from 0 to 16 times per task (M = 2.30, SD = 2.97). For WiseType, it 
ranged from 0 to 18 times per task (M = 2.10, SD = 2.77). 

For the newer features in WiseType, Smart-Backspace was used 
between 0 to 5 times per task (M = 0.32, SD = 0.80). The usage of 
tapping to access the context menu (for all grammar, spelling, auto-
correction and prediction) ranged from 0 to 4 times per task (M = 
0.30, SD = 0.55). 

	
Figure 14: Average number of backspaces used per 

task for both conditions. 

7.5 Post-Study Questionnaire Responses 
Figure 15 shows the questionnaire responses and that the majority 
rated the word prediction feature as very good or good and 
WiseType overall as very good. Figure 16 illustrates the learnability 
of WiseType. 
 

Figure 15 Perception of WiseType. The majority of participants 
rated WiseType positively.  

 

Figure 16 Learnability of WiseType. The y-axis represents the used 
Likert scale and the x-axis percentage. 

8 DISCUSSION 
The result shows that text entry speed significantly increases 
(Figure 11) and writing errors decrease significantly (Figure 12) 
with WiseType. Although WiseType uses more visible word 
predictions, which could decrease text entry speed, the availability 
of fast error correction methods overcomes any potential costs of 
perception and interaction. We also identified in our pilot studies 
that each individual feature (highlighting, Smart-Backspace, etc.) 
might not yield a significant improvement. Yet, the main study 
shows that the synthesis of Smart-Backspace, context menu, 
prediction panel and highlighting yields a significant improvement. 

Interestingly, the number of keyboard actions significantly 
decreases with WiseType. One explanation could be that WiseType 
decreases the usage of the regular backspace significantly (Figure 
14). Another reason could be that participants depend more on word 
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prediction to complete the words. When we asked participants 
about auto-correction and word prediction, some commented that 
they were depending on auto-correction to fix their mistakes. One 
even stated that “auto-correction makes people lazy”. We observed 
that different people might use auto-correction in different ways. In 
particular, we found that some preferred not to complete words if 
they knew that the predictive system will complete it. 

The pilots and interviews helped us understand participant needs 
better. Specifically, after identifying in our pilot that participants 
assumed that underline and highlighted words were interactive and 
tapped frequently on the touchscreen, we made all highlighted 
words interactive and added a context menu. We had not considered 
a context menu before the pilots, especially because tapping and 
expecting a context menu with predictions is not a very common 
interaction in current text entry systems on mobile devices. 

Performance with our conventional keyboard was below usual 
typing speeds on mobile phones in the wild [38]. We attribute this 
to two main reasons: 1) participants were typing on a device and 
keyboard new to them – whereas they are very familiar with their 
own device and keyboard in the wild; 2) they were asked to focus 
on correcting grammatical errors, which requires cognitive effort. 
This was a non-trivial task for most participants, especially for the 
non-native English speakers. 

In the interviews, we asked participants about their experience 
with WiseType and how it related to other technologies they are 
using. Some participants compared our keyboard to their mobile 
devices’ keyboard, while others compared it to Grammarly9. This 
last comparison is interesting, as grammar checkers were not widely 
available on mobile devices at the time of the study. The results for 
the pre-study questionnaire show that 8 (66.67%) of our participants 
self-identified their grammar proficiency during text entry as either 
poor or fair. In the interview, many commented that WiseType could 
help them identify grammar mistakes and typos. Hence, we identify 
a great potential for integrating grammar checkers into mobile 
keyboards. The results for the pre-study questionnaire show that 5 
(41.6%) rated word prediction in their current touchscreen keyboard 
positively, while a larger number, 9 (75%), rated WiseType in the 
exit questionnaire positively. 

For text entry, the predominant mode of smartphone usage is 
portrait mode, typically by holding it with one hand and typing with 
the other [13]. Holding larger tablets (12” and bigger) with a single 
hand for extended periods is tiring. Fitts’ law can be used to predict 
that text entry performance might be different in smartphones and 
tablets. This was experimentally validated in a comparison of text 
entry on smartphones and tablets in landscape mode with a 
population of older adults (some with tremor) [36]. Still, the 
benefits of better error visualizations and smart error correction 
methods are (mostly) independent of the form factor of the device 
and we expect these benefits to transfer even to smartphone typing 
in portrait mode. While our results only enable us to make claims 
on the behaviors associated with our participant pool, previous 
research has shown that error highlighting mechanisms are 
beneficial for older adults [26]. That prompts us to reasonably 
believe that our results will also generalize to other demographics. 

9 CONCLUSION 
Error correction has been highlighted as a key challenge for text 
entry as it contributes massively to slow real-life text entry speed 
and frustration (e.g., [22]). WiseType is a new interactive keyboard 

                                                             
9	https://www.grammarly.com	

that offers improved visual feedback to increase error awareness 
without decreasing text entry speed. The novelty of our approach is 
the combination of different visual representations for grammar and 
spelling errors, auto-corrections, and accepted word predictions 
together with fast correction methods like a context menu and the 
Smart-Restorable Backspace. The fast correction methods decrease 
the overhead of correcting errors and reduce the number of 
keyboard actions. Overall, WiseType performs better than a 
conventional predictive keyboard by significantly reducing writing 
errors and increasing writing speed. Subjective analysis indicates 
that the highlighting contributed to users actually perceiving and 
correcting a higher number of grammatical errors far from the 
current cursor position. Interestingly, our study shows that 
increasing the visibility of errors combined with fast correction 
methods can improve both writing speed and accuracy regardless of 
the potential increase in perception and interaction costs. 

Research on error correction is particularly challenging with 
standard text-entry lab study protocols, as users make very few 
errors in lab conditions [40,44]. After experimenting with social-
network sourced phrases that proved too confusing in pilot studies, 
our Enron corpus with injected errors proved a useful approach to 
evaluate error correction methods. 

10 FUTURE WORK 
We are currently developing a prototype Android IME and are 
planning to conduct a long-term study to explore users’ behaviors 
and identify additional pattern around error correction. A particular 
focus will be on how the tradeoff between text entry speed and 
accuracy is affected by long term usage with our keyboard used as 
users’ standard keyboard. We will also study the types of 
grammatical error that are best supported and if there are language, 
regional, cultural, or age variations in perceived importance of 
different classifications of errors on mobiles. 

We also plan to study how our system can support users while 
learning a language (either as a child or as a second language) and 
how to tune the support for people with language related learning 
difficulties, such as dyslexia. We also plan to look further into the 
language support needs and implications of comparisons of native 
vs. non-native speaker text entry. 
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