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Abstract—Predicting the footfall in a new brick-and-mortar

shop (and thus, its prosperity), is a problem of strategic im-

portance in business. Few previous attempts have been made to

address this problem in the context of big data analytics in smart

cities. These works propose the use of social network check-ins as

a proxy for business popularity, concentrating however only on

singular business types. Adding to the existing literature, we mine

a large dataset of high temporal granularity check-in data for two

medium-sized cities in Southern and Northern Europe, with the

aim to predict the evolution of check-ins of new businesses of any

type, from the moment that they appear in a social network. We

propose and analyze the performance of three algorithms for the

dynamic identification of suitable neighbouring businesses, whose

data can be used to predict the evolution of a new business. Our

SmartGrid algorithm reaches a performance of being able to

accurately predict the evolution of 86% of new businesses.

Index Terms—Smart Cities, Smart Economy, Social Networks,

Location analytics

I. INTRODUCTION

Smart cities deploy technological solutions as a means to
improve the economic and social life in the urban environment.
To do so, they rely on three fundamental components: Tech-
nology factors, Institutional factors and Human factors [1].
Since one of the key objectives of a smart city is to enhance
economic life, a critical aspect is the ability to plan and
organize economic activities in the urban environment. One
pertinent question in the subject of planning, is the monitoring
of economic activity, which can then lead to forecasting and
planning suggestions for businesses. While a significant pro-
portion of economic activity nowadays includes the digital and
remote provision of retail and services (e.g. e-shops), urban
environments are still dependent heavily on the operation
of traditional brick-and-mortar shops and businesses. Such
businesses are heavily dependent on spatial and social aspects,
since the location of their premises and social characteristics
of that location, are important factors in their success [2].
In a smart city context thus, support for the operation of
such businesses is a valuable objective. Being able to monitor
the economic activity around brick-and-mortar businesses can
support the purpose of forecasting, and also planning for new
business opportunities. Therefore, a smart city can exploit
the analysis of big data about the brick-and-mortar retail

environment, to provide answers to questions such as “where
should a new business locate itself?” or “what is the likelihood
of success of a new business, if it opens at a given location”?

To support this objective, a smart city solution must consider
the spatial and social characteristics of different segments of
the urban environment, but also must take into consideration
temporal aspects of these contextual characteristics. Ideally, if
a smart city system was able to collect business operational
data from every such business (e.g. daily revenues, number of
employees, size of premises, number of customer visits etc.),
deriving answers to such questions would be likely possible.
However, such data is not easy to acquire. The major obstacle
is that such data is sensitive and therefore unlikely to be shared
with an authority implementing smart city solutions. There
is (and can likely be) no legal requirement to provide this
information to any authority other than tax and employment
administration agencies. It is also improbable that businesses
could be asked to volunteer such data, because there is no
direct benefit to the business in order to adopt the overhead and
cost of providing the data. Additionally, some of this data (e.g.
number of customers) requires the installation of significant
sensing infrastructure, which has a further cost to businesses
(or city authorities) to install and maintain.

In order to obtain some metric of the economic and social
activity in a urban environment, we must therefore look to
different data, which can act as a proxy to these direct
measurements. One such abundant resource of data is social
network data. As most businesses nowadays have a presence
in social networking sites (e.g. Foursquare, Facebook), or
even have explicit policies for engaging customers through
this presence, data such as venue check-ins, ratings, likes,
comments etc. are generated. This data is accessible through
the APIs provided by the social networks, meaning that it
is possible to generate big datasets from this information,
and to therefore subsequently process and analyse them. The
level of engagement with a business on social networks can
be considered as a reasonable proxy for its popularity (and
therefore economic prosperity) [3]. Hence, in this paper, we
aim to investigate how data from such social networking
sites can be used, in order to generate business intelligence
for location planning purposes. More specifically, we aim to



address the question of forecasting the popularity on social
networks of a new business, depending on the location that it
opens, and the associated social and spatial characteristics of
that location, as mined through social network data.

II. RELATED WORK

Although e-commerce is an increasingly growing sector,
retail through physical stores continues to account for the
largest proportions of sales worldwide, even in countries where
the digital economy has greater penetration. For example,
in the US, a recent report shows that 86% of retail sales
take place in physical stores (even though 53% of these
purchases is digitally influenced) [4]. Solving the problem
of choosing a retail site location remains therefore a critical
factor of success in traditional physical stores. There have been
numerous attempts to model, understand and obtain forecasts
on solving this problem for several decades – perhaps the
most influential work in this area is Reilly’s law of retail
gravitation dating back to 1953 [5]. This law states that retail
zones (trade centers) draw consumers from neighbouring com-
munities in proportion to the retail zone area population and
inverse proportion to the distances between these communities
and trade areas. Although population size and distance are
primary factors in determining a trade area’s “gravitational
force” towards consumers, other factors such as the quality of
services or goods and prices, can affect the gravitational force
of an area. The corollary that emerges from this law is that
physical stores can benefit from being located trade areas that
effect a strong gravitational force on consumers, and since it
is possible to measure the gravitational force of a trade area,
we can predict the success of the stores located in it.

Although the population residing in a trade area is one
factor in Reilly’s law, it is often the case that successful
trade areas are not heavily populated. Such examples are
organised retail parks, or gentrified areas, where the number
of stores is heavily disproportionate to the number of actual
residents. It is therefore reasonable to define a trade areas’
population not by the number of actual residents, but by
the number of visitors that this area receives. Measuring this
number is possible through high-tech and low-tech methods.
The latter mostly consist of manual sampling efforts, which
are costly and cannot provide a constant stream of data [6].
High-tech methods can provide a continuous stream of data,
through the use of sensor equipment. In past literature, various
methods have been reported for this purpose, including real-
time analysis of video camera feeds [7], wi-fi signals [8], [9],
Bluetooth signals [10] or a fusion of smartphone sensors [11].
The main drawback of these approaches is the required heavy
investment in setting up and operating a sensing infrastructure,
and therefore limited scalability for large urban areas.

Another source of determining crowd presence and mobility
patterns is the use of data from social networks. In most
social networks, users are allowed the ability to “check-in”
to a place, i.e. to volunteer their current position. This is
typically done by indicating presence at a specific venue,
and there are social network applications such as Foursquare

which have been built with the main focus being on the
sharing of location details (and subsequently, opinions and
ratings on the venues that users check in to). Users check
into places under a specific context, which is characterised
by factors such as location, time, user profile and natural
environment conditions [12]. This data is easily accessible
to researchers through the application programming interfaces
(APIs) that social networks provide, therefore enabling the
large-scale collection and analysis of this data for various
purposes related to the objectives of the smart city vision [13].
In previous literature, check-in data has been used to analyse
mobility patterns [14], to measure urban deprivation [15] or
even accessibility [16].

Closer to this paper’s theme, we find the literature on the
use of social networking data for planning business locations
is rather limited. In [17], data from Facebook venue pages
are combined with official urban planning data (sets of urban
zones characterised officially as “residential”, “commercial”,
“business” or “recreational”). The authors describe the use of
machine learning techniques to augment the official classifica-
tions with data derived from Facebook, re-classify the different
urban zones based on the type of businesses located therein,
and then attempt to match individual business profiles with
relevant zones, restricting the process to food businesses. In
[18], food businesses are again used as an example to predict
their evolution on social network presence during the Olympic
games in London. During this process, the authors find that the
proximity to Olympic venues, neighbourhood popularity and
presence of a variety of business types are good predictors for
the evolution of check-ins to these businesses over time. In
[19], the authors predict the check-in count of any food busi-
ness based on the social network data of its surrounding food
businesses, using the business’ category, the categories of its
neighbours (within a predefined distance range), check-in data
of the business and also of its neighbours, using a gradient-
boosted machine algorithm. Estimating the performance of
this approach over a distance-based clustering of neighbours
(clustering on the average check-ins of all businesses within
a predefined radius), they find that their proposed algorithm
performs better for all subcategories of the food type business.
One limitation of this approach is that the cluster of businesses
selected for the analysis and forecasting is strictly limited by
the user-specified radius. Therefore, forecasting models might
miss out on potentially useful information from businesses just
outside this radius. Additionally, these approaches do not take
into consideration the likely complementarity of businesses but
limit the data set to single categories only. In [20], the authors
use a range of features characterising an area (e.g. presence
of competitive businesses, area popularity, mobility into the
area), to predict the “optimal” location in which to place
a business, focusing on three particular food business retail
chains (Starbucks, McDonalds and Dunkin Donuts). Their
work shows that it can identify these areas with an accuracy
approaching 93%, but this concerns only the placement of a
store, and not its evolution over time. Finally, in the most
recent related work that we could find [21], the authors



complement mapping data from Google (business locations)
with other spatial characteristics of a location, e.g. presence of
ample parking, proximity to housing, visibility from adjacent
roads, proximity to public transport etc. They train a decision
tree model which is able to determine the type of business that
should be opened at a certain location, given that location’s
spatial features.

To conclude, the use of social network data for the pur-
poses of retail store has not been extensively studied in the
past. Some promising results have emerged from the limited
previous literature. However, further work in this area remains
to be done, especially in two directions. First, with concern to
how a trading zone can be dynamically defined, as opposed
to static zone definitions via urban planning characterisations.
Such dynamic zones would reflect the true ”heartbeat” of the
city, as their boundaries continuously adapt to actual human
use. The second direction is to take into account the spatial
properties of the area and the spatial relationships between the
businesses located therein (as opposed to the arbitrary choice
of venues, e.g. by defining a fixed radius).

III. DATA CAPTURE AND ANALYSIS APPROACH

A. Data collection

Our data is collected from the FourSquare API via the
process previously published in [22]. We chose this platform as
it has an openly accessible API (e.g. compared to Instagram),
global coverage (e.g. compared to Yelp) and because it focuses
on real-time check-ins (whereas Facebook for example allows
users to check into places while they are not really there). To
briefly repeat the process, we define an urban area of interest
and then define a grid of equidistant location coordinates
within that area. For each coordinate, we define a circular
radius (search radius). The locations are chosen so that the
radii of neighbouring locations overlap slightly, thereby the
resulting circles effectively fully cover the urban area of
choice. For each of these locations, we query the FourSquare
API every 30 minutes and retrieve the venues with the search
radius of each location, along with their basic data (name,
category, subcategory, total check-in count, current check-
in count, rating). Since the radii overlap, it is possible that
the same venue is returned multiple times from this process,
therefore duplicate entries are discarded and the entire set
of results is stored in a relational database. The resulting
dataset allows us to build a timeline of check-in evolution
over time for any venue in the city. Importantly, the process
protects users’ privacy, as it doesn’t access user profiles, just
the aggregate anonymous check-in counts that are publicly
visible for any venue.

B. Measuring social network evolution of venues

Given the ability to measure the evolution of total check-
in counts over time with a high granularity (30 minutes), in
this paper we introduce the avgCM metric for venues in social

networks, which is defined as the average number of check-ins
performed at this venue over a time period t.

avgCM(v, T ) =
C(tj)–C(ti)

tj–ti
(1)

where v is the venue in question, timestamps ti (start) and
tj (end) define a temporal period T measured in days, and
C(ti), C(tj) are the total check-ins observed at this venue at
timestamps ti and tj respectively. As an example, if venue
X had 30 check-ins on 01/03/2018 and 100 check-ins on
30/4/2018 (61 days), then avgCM(X, 61) = (100�30)/61 =
1.15. We use this metric throughout the rest of the paper, as
our intended prediction target.

C. Dynamic neighbourhood estimation algorithms

One question in the analysis of results is the consideration of
spatial relationships between the data which is going to be used
as input, for the forecasting of a venue’s social evolution. For
this we devised three approaches, which are described next.
The main assumption behind these approaches is the concept
of “gravitation” towards retail zones, i.e. that consumers tend
to be attracted to retail zones where they can obtain better
goods or services. The more attractive a zone is, the more
consumers it gathers, effectively establishing a hard-to-break
advantage over other areas. Therefore, if it were possible to
a) identify these retail zones and b) examine their popularity,
then we might be able to obtain a reasonable approximation
for the evolution of a new business, opening in any given zone.

D. Entire Urban Area - EUA Algorithm

Our baseline approach is to consider the entire urban area
(EUA) and all venues, as input for analysis. The starting
point is to select a particular location for which we want
to predict the avgCM metric, which we term the “reference
point”. We also define a temporal period T which determines
how far back we want to fetch data for avgCM calculations
of other venues. Subsequently, we construct a dataset from
our original data which defines all venues in the database
using 5-dimensional vectors with the following attributes: id
(the venue id), latitude, longitude, distance (from the reference
point) and avgCM (of the venue). Then, we use the DBSCAN
clustering algorithm on the spatial attributes of the vectors,
to separate the venues into location clusters, and identify the
cluster in which the reference point belongs (this is termed the
“reference cluster”). DBSCAN depends on two parameters, ✏
and minPts, which correspond here to the maximum distance
between a point and its neighbours (so that they can be
considered ”neighbours”) and the minimum number of points
that are required to form a cluster. Next, we extract all the
venues belonging to the reference cluster, and further split this
cluster based on the avgCM metric of the contained venues,
using a K-means approach, setting k=3 when the number of
venues in the reference cluster is less than 60, else setting
k=number of venues / 20. In this way, when there are relatively
few venues in the reference cluster, we effectively distinguish
proximal venues in a simple [low,medium, high] avgCM



categorisation. When there are many proximal venues, we
effectively split these venues in clusters of approx. 20 venues
each, according to their avgCM values. We then average
the resulting avgCM of each cluster, and the derived value
becomes the estimated avgCM of the reference point.

E. Rectangular Grid - RG Algorithm

The EUA approach has the disadvantage that it is possible
that the resulting clusters include venues, which are, in reality,
quite far apart (e.g. in urban areas where the density of
venues is low). This can be realistically problematic, since
it is unlikely that a venue that’s, for example, 700m away
from the reference point, can actually play some role in the
reference point’s avgCM evolution. To limit this problem,
the Rectangular Grid (RG) approach separates the urban area
into smaller subsections (“tiles”), which are of a rectangular
configuration and whose dimensions (height and width) are
customisable (Fig. 1 left), attempting to split the area into
tiles of the same size. For this approach, we first establish a
“bounding box” using the maximum and minimum latitude
and longitude values of all venues in an urban area. Then, a
step-wise process separates the area into rectangular tiles with
the dimensions set by the user. A side-effect of this algorithm
is that tiles in the eastern and southern edges of an area can
result in smaller than prescribed sizes, since the area is not
always exactly divisible by the specified tile size. This process
results in a set of tiles, which contain a varying density of
venues. To assess a reference point’s avgCM evolution, we
can therefore use the same steps in EUA approach, but only
for the tile which contains the reference point. However, in
the EUA approach, the k-means clustering step used a simple
formula to determine an appropriate value for k, but this is not
appropriate for the smaller tiles, given their variable venue
density, which can mean too few, or too many venues in a
given tile. Therefore, as a first step, we attempt to obtain a
better estimate for k, with the following approach. For every
tile, we iteratively run the DBSCAN algorithm on each tile’s
venues, to identify clusters, starting with an ✏ value of 0.015
and setting the minPts to 3. We examine the resulting number
of unclustered venues in the tile, and if there are more than
25% of the total, we incrementally increase the ✏ value by
0.005, and repeat the process until no more than 25% of all
venues in the tile remain unclustered. Running this process
for all tiles, we obtain a set consisting of paired number of
cluster and tile venues values. From this set, given any specific
value, we can estimate the appropriate value of k to use, by
carrying out a linear regression on the resulting paired value
set. Therefore, for the tile containing a reference point, we
repeat the steps in the EUA approach, using only the venues
within a given tile, and setting k to the value dynamically
obtained from the linear regression model. We then average
the resulting avgCM of each cluster, and the derived value
becomes the estimated avgCM of the reference point.

Fig. 1: Visualisation of an urban area division by the RG
(left) and SG (right) algorithms. The blue markers show the
location of venues retrieved from Foursquare. Markers show
the location of ”reference” points for SG.

F. Smart Grid - SG Algorithm

The Rectangular Grid approach has one major disadvantage:
the way venues are separated is somewhat blind to the geogra-
phy and spatial characteristics of the urban area. For example,
tiles may contain a large amount of empty space (e.g. water),
therefore resulting in separations which do not make spatial
sense. To overcome this difficulty, we devised a third approach
(Smart Grid – SG), which attempts to dynamically identify a
subsection of the entire area to use, in order to predict the
evolution of the avgCM of a specific reference point. To do
this, we first run a k-means algorithm over the entire area.
The k-value can be set by the user, and this results in what
we term “smart tiles”. In each of the resulting clusters, we
run an iterative version of the DBSCAN algorithm, starting
with an ✏ value of 0.015 and progressively increasing it by
0.005 until there are no more than 25% unclustered venues
in each of the k-means derived clusters. From the resulting
paired number of cluster and tile venues values, we then derive
a linear regression model which can be used to further run k-
means to sub-cluster each original “smart-tile”, in order to
extract a reference cluster to assess the estimated avgCM of
the reference point (Fig. 1 right), which again is the average
the resulting avgCM of each cluster.

IV. EXPERIMENTAL EVALUATION

To determine the performance of our algorithms, we exam-
ined data collected for two similarly-sized cities, of approx-
imately 200k inhabitants, one in Southeast Europe (Patras)
and one in Northern Europe (Oulu), over two years (2014 and
2015). The dataset consists of >35.5 million rows of check-
in data for 3,436 places in Patras and >26 million rows of
check-in data in 3,451 places (Oulu), with total size ⇡6.5GB.

During these two years, several new businesses opened up
in various locations, and since we were able to identify their
first appearance on Foursquare and were able to track their
evolution over the year, we are able to simulate the prediction
of their social network evolution. A ”new venue” in any given
year is defined as a venue for which we first have a check-in
record in that year, and that first record shows a total count



of check-ins of 1. In total, we discovered 79 new venues
(reference points) for Patras and 51 in Oulu for 2014, and
55 for Patras and 36 for Oulu in 2015. For each of these
reference points thus, we picked a time window of 60 days
after their first appearance in our dataset, and used this data to
calculate the final true avgCM of the reference point, and as
a dataset window to calculate the avgCM of the venues in the
clusters which this reference point belonged to. As a metric of
success, we considered that the avgCM of the reference point
was “correctly predicted” if it fell within the 95% confidence
interval for the avgCM of all the sub-clusters.

A. Empirical evaluation of algorithm parameters
The EUA algorithm relies on the DBSCAN ✏ parameter and

minPts (minimum points) parameter, which we set to 0.035
and 3 respectively. The ✏ parameter is the distance from a core
point, and the value of 0.035 reflects a distance of ⇡35 meters,
which is roughly half a city block’s length. We chose this value
to capture neighbouring points that are tightly packed together
in a typical retail zone (i.e. multiple shops in a city block), and
define the minimum points in a “cluster” to 3. We use these
values both in the EUA algorithm and in the places where RG
and SG rely on DBSCAN. Running the EUA algorithm, we
find that it was unable to execute for some reference points in
both cities, i.e. DBSCAN was unable to assign the reference
point to a cluster using the parameters ✏ and minPts. For
Patras, EUA was unable to execute for 26.6% of reference
points in 2014 and 29.1% in 2015. For Oulu, the values were
54.9% (2014) and 55.6% (2015) (Fig. 2). The reference points
that the algorithm was unable to execute for were places that
opened in locations for which the venue density was quite
sparse, therefore it is logical from a theoretical standpoint that
we would not be able to predict their evolution in social media
with much accuracy, based on their neighbours.

The RG and SG algorithms rely on two other user-defined
parameters which are important for their operation. RG re-
quires the specification of a tile size, and SG requires the initial
k-value for its first clustering step. Depending on the values set
for these parameters, the algorithms may not be able to execute
for a particular reference point. For example, if the point is

Fig. 2: EUA execution success across all reference points

Fig. 3: RG execution success across all reference points

at a very sparsely populated area, it might not be possible
for DBSCAN to derive any suitable clusters (remember that
we specified that a cluster must have a minimum number of
3 venues). Therefore, as a first step, we aimed to determine
parameter values which minimised the number of reference
points for which the algorithms were “not executed” (NE).
For RG’s tile size, we used a square configuration, setting
the height of the tile equal to its width, and experimented
with values starting at 100m and incrementally going up to
1000m, using a step of 100m. From Fig. 3, we note that for
the city of Patras, the number of NE reference points reaches
minimal values for both years, with a tile size set to 1km2

For the city of Oulu, this minimum is reached for both years
again with a tile size set to 1km2. While in both cases we
see that very small tile sizes result in an almost complete
failure of the algorithm, the situation shows an improvement
trend for Patras reaching a low of approximately 34% of NE
venues in both years (2014: 30%, 2015: 38%). The size of
the tile area is positively correlated to the number of executed
points with statistical significance in both years (Spearman’s 2-
tailed correlation 2014 ⇢ = 0.888, p < 0.01; 2015 ⇢ = 0.796,
p < 0.01). In Oulu, the resulting performance is worse (2014:
61%, 2015: 47%), and this linear improvement trend is not
observable after a tile size of 0.16km2. Again for Oulu, the
size of the tile area is positively correlated to the number
of executed points with statistical significance in both years
(Spearman’s 2-tailed correlation 2014 ⇢ = 0.772, p < 0.01;



Fig. 4: SG execution success across all reference points

2015 ⇢ = 0.759, p < 0.05). We can conclude therefore that the
increase in tile area with the RG algorithm yields it the ability
to execute for a wider range of reference points. However,
even in the best case situation (Patras, 2014), the algorithm
was able to run for no more than 70% of the reference points.

For SG, we experimented with values of k between 1 and
256, increasing by powers of two (i.e. [2, 4, 8, . . . , 256]). In
this process, we found that the number of NE reference points
remained constant despite the increase of the k-value, with
2014 showing maximum of 14 (16.5%) NE points for Patras
and a maximum of 22 (43.3%) points for Oulu, while 2015
showed 12 (21.8%) and 11 (30.5%) points respectively (Fig.
4). As can be expected, there is no statistically significant
correlation between the value of k (number of clusters) and
the number of points the algorithm was able to execute
for. We note that these values are markedly better than the
corresponding RG values, across cities and years.

B. Algorithm performance

We examined the performance of the algorithms using the
different value parameters to determine whether they also
have an impact on the ability of the algorithms to correctly
predict the social network evolution of the reference points
in these two years. As explained previously, we define a
prediction to be correct, if the observed avgCM metric of the
reference point falls within range of the mean avgCM±95%c.i.
of the other venues in its cluster. This effectively transforms

our problem into a classification problem, where classes are
defined by a range of values that are the mean avgCM±95%c.i.
in a cluster. Thus, for performance measuring purposes, we
can use the recall metric defined as true positives over the
sum of true positives and false negatives. In this case, true
positives are those reference points whose avgCM metric falls
within their cluster’s range, and false negatives are those points
whose avgCM metric falls outside their cluster’s range (i.e.
the algorithm was not able to properly assign a class to
these reference points). We present results as a percentage of
correctly predicted reference points over all reference points,
and as an adjusted percentage over the number of reference
points for which the algorithm was able to execute.

We estimated the performance of EUA for both cities in
both years. As per Fig. 5, the algorithm is able to correctly
predict the social evolution in a relatively small fraction
of the reference points (2014 Patras: 29.1%, Oulu 21.6%;
2015 Patras: 29.1%, Oulu: 16.7%). Considering the adjusted
performance values (i.e. discounting the number of points for
which the algorithm did not execute), the situation improves
somewhat, but the performance is still quite low (2014 Patras:
39.7%, Oulu 47.8%; 2015 Patras: 41.0%, Oulu: 37.5%).

Fig. 5: EUA performance across all reference points and across
executed reference points only (adj.)

Next, we estimate the performance of RG for the various
tile sizes (Fig. 6). For Patras, we observe an increase trend in
the percentage number of correctly predicted reference points,
reaching a maximum of 31.6% in 2014 and 30.9% 2015, with
a tile size of 1km2. Viewed as an adjusted percentage, this
reaches 53.1% with a tile size of 0.64km2 in 2014 and 46.6%
in 2015 with a tile size of 0.81km2. There is a statistically
significant correlation between the area of the tiles and the
recall performance of the algorithm in both 2014 (Spearman’s
two-tailed ⇢ = 0.851, p < 0.01) and 2015 (⇢ = 0.754,
p < 0.05), however the correlation in the adjusted percentages
is not statistically significant in either year. This observation
might be due to the fluctuating performance for small tile
areas, where we also found that the algorithm was able to
execute for only a small fraction of the reference points.

Finally, we estimate the performance of SG for the various
cluster sizes (Fig. 7). For Patras, we observe a logarithmic



Fig. 6: RG execution success across all reference points

increase in the correct predictions with the number of clusters,
for both recall metrics (over all points, and adjusted). The
correlation between the number of clusters and correctly
predicted reference points is statistically significant in both
years (Spearman’s two tailed 2014 ⇢ = 0.976, p < 0.01;
2015 ⇢ = 0.707, p = 0.05) and also statistically significant
for the adjusted performance (Spearman’s two tailed 2014
⇢ = 0.976, p < 0.01; 2015 ⇢ = 0.707, p = 0.05). Similar
observations are seen for the city of Oulu. The correlation
between the cluster number and correctly predicted reference
points is statistically significant in both years (Spearman’s two
tailed 2014 ⇢ = 0.922, p < 0.01; 2015 ⇢ = 0.934, p < 0.01)
and also statistically significant for the adjusted performance
(Spearman’s two tailed 2014 ⇢ = 0.929, p < 0.01; 2015
r = 0.934, p = 0.01).

We present in Fig. 8 each algorithm’s best performance,
with the criterion that the algorithm will have executed for at
least 10 reference points. The SG algorithm outperforms the
baseline EUA and the RG algorithm consistently, achieving
better prediction performance in both cities and for both years.
This performance advantage holds when all reference points
are considered, and is substantially increased when calculated
over only those reference points for which the algorithm was
able to execute. One significant advantage of SG also seems to
be the fact that its ability to execute is invariant to the running
parameters, therefore leaving out a constantly small number of
reference points for which it is unable to provide a prediction.

Fig. 7: RG execution success across all reference points

Fig. 8: Algorithm performance under optimal parameters

V. DISCUSSION AND CONCLUSIONS

We presented three algorithms to solve the problem of
predicting the evolution of check-ins for a venue in a social
network, based on the check-in behaviour of users in the
venues in its neighbourhood. Since the number of check-
ins can be associated with the visitation patterns in physical
stores, and by extension, their commercial success, we have
demonstrated an ability to predict the commercial success of
a new physical business, in the context of a smart city. Our
approach has the benefit that it is based on readily available



data and can be deployed for any urban environment with
a considerable venue density. We have demonstrated that
the SG algorithm is able to dynamically adapt to the local
spatial characteristics of urban environments, better than the
EUA and RG approaches. It successfully identifies appropriate
neighbours for a target venue, thus being able to predict its
evolution on social networks based on these neighbours. The
results of the SG algorithm on two similar-sized cities in
countries with societal differences (north and southern Europe)
show that the approach is possibly generalisable globally.

Contrary to other approaches in current literature [17]–[19],
[21], we did not limit ourselves to a specific type of business
(e.g. food), but allowed the algorithm to execute for all types
of businesses in the input dataset. Further improvements could
include limiting the input dataset to just those neighbouring
businesses which are of the same type as the target. We
could also have chosen to consider only business types which
can be considered as complementary, e.g., if the target is a
restaurant, we could include restaurants, cafes and bars, since
they also typically serve food, or only those businesses which
are open at the same time as the target business. However,
such approaches would require a more intimate knowledge of
how the retail market operates in a given urban environment
(e.g., mobility and temporal aspects of visitation in venue
types), which is difficult to acquire. In further work, we would
like to explore the performance of our algorithm in different
scale urban environments (e.g. large dense urban areas like
Manhattan, NY). Further work is also required in defining
more appropriate classification targets, since in this case we
employed a rather simple metric, and to examine different
types of engagement in social network presence, such as
number of likes, ratings, customer comments and feedback.
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