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a b s t r a c t

As users store increasingly larger amounts of personal information on their mobiles, the
task of retrieving such items (e.g., contacts) becomes more difficult. We show that users
can be categorized by their communication patterns and that each category benefits
differently from supporting contact management applications. By examining mobile user
call logs, we show that it is possible to aid retrieval tasks using relatively simple heuristics
and algorithms that describe usage context, using solely the dimensions of contact use
frequency and recency. We compare and discuss the results of the proposed method
applied on two different mobile datasets: a large dataset fromNOKIA and a smaller dataset
collected by ourselves.
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1. Introduction

Technological advances of the last decade have turned mobile phones into small multi-purpose personal computers
being equipped with a camera, GPS receiver, accelerometer, Bluetooth, and other sensors. These devices are now used,
among others, to access the World Wide Web and transfer files, and as email clients and calendar reminders. However,
mobile phones are still primarily considered as communication devices. As such, some of the most common tasks for their
owners include searching for a contact in a phonebook or selecting one from a recent call list [1]. As the contact lists
become increasingly bigger, and since a significant number of contacts are never actually used [2], the cognitive load on
the user increases while trying to retrieve a contact from an expanding dataset. This effort is further obstructed by the
limitation of the relatively small screen that mobile phones are equippedwith, which restricts the information presentation
space. Furthermore, since call logs impart information about use and not lack of use, mobile devices have become good at
supporting communication but provide little support for the task of managing social relationships (i.e., deciding who to
contact and how frequently), leaving decisions entirely to the users.

Mobile devices can collect a significant amount of data and information about the user’s context, including location,
current date and time, the orientation of the device, whether the user of the device is on move and his/her speed, the user’s
current task (e.g., on the phone, messaging), whether vibration or silent mode is enabled, etc. [3]. Devices can capture a lot
of personal information related to the user’s social environment [4], generated either automatically by the device (e.g., a
phone list saves the calls that have beenmade, the time of day for each call, and the duration) or by the user (e.g., SMS/MMS
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and multimedia files, browser’s history, calendar events, etc.). Therefore, a mobile device could also be aware of the social
environment of the user (social context). The combination of social and mobile context results in a dynamically defined
social context, termed themobile social context [5].

In this paper, we deal with the problem of personal information management as applied to the users’ contact lists, and,
more specifically, the task of retrieving the desirable contact when performing an outgoing call. Our hypothesis is that this
task can be aided by amobile interface that can predict which contact is themost probable to be called at any time, and thus
offer speedier access to it. We believe that a solution to the retrieval problem can be informed by mobile social context, as
mobile users seem to adopt different behaviour patterns under different contexts. As an example, consider the following
scenarios derived from our experiment participants that involve two different context dimensions, frequency and recency.

Scenario 1. George is from Greece but works and lives in the UK. George’s contact list is in both English and Greek, and the
constant switching between languages makes searching for contacts quite bothersome. Thus, he relies on his call log for retrieving
contacts, but, given the large number of calls he receives each day, he frequently has to scroll up and down a lot before he can find
the contact he wants to call. Though not optimal, he prefers this style of interaction, as he perceives it to be less annoying than
switching languages and searching.

Scenario 2. Maria is a Ph.D. student at the University. She rarely calls her supervisor on hismobile phone; however, today he called
her to arrange a meeting. After the meeting, Maria tried hard to remember the name of a paper her supervisor recommended but
she could not. She had to phone him again, as he was out of the office for the whole day.

Bymodelling user ‘‘socialness’’ using actual call logs, we show later in the paper that themajority of users are significantly
suboptimally served by existing contact management applications, such as the recent call list and the frequently used
contacts list. As a first step in our research, we consider only two context dimensions, frequency and recency of use of
each contact, as demonstrated by the scenarios above. The paper focuses on examining the effect of each dimension on the
success of predicting the likelihood of a contact being called. We show that the combination of these context dimensions
provides better prediction results than traditional access modes (list of recent calls, list of more frequently used contacts),
something that has implications in the design of better interfaces for communication support and contact list management.
Moreover, by comparing the results of our approach to those of the algorithms presented in the section on related work
(directly applying two of them on the same dataset), we show that our algorithm, although simpler, outperforms existing
more complex solutions. By presenting a preliminary analysis on the effect of adding a third dimension (time of day) in our
algorithm, we argue that incorporating more dimensions in a prediction model does not necessarily provide better results,
and that a thorough analysis of each candidate dimension seems to be required.

The rest of the paper includes a review of related work, followed by a section on methodology that justifies our context
dimension choices, describes the datasets used, introduces the ‘‘socialness’’ metric for users and details our prediction
algorithm. We present our findings in detail in Section 4. Section 5 presents a preliminary experiment with the addition
of a third dimension (temporal context), while in Section 6 we compare our approach with other algorithms. Finally, in
Section 7, we discuss these findings and provide our conclusions and suggestions for further work.

2. Related work

Users daily create, receive, and store significant amounts of personal data, whose organization and retrieval becomes a
difficult task due to their increasing size. Personal informationmanagement (PIM) is an important research area not only for
the case of desktop computers, but also for mobile devices. One of the primary reasons is that users are reluctant to remove
old items from their computing devices, resulting in an ever-expanding collection that hinders search and retrieval [6].
Handheld devices are considered trusted devices in which several types of personal information item are stored (contacts,
photos, music, videos, notes, tasks, etc.). They also impose an additional burden to PIM due to limitations such as screen
size, input/interaction modes, and navigation [7]. Myers et al. [8] stress the need for mobile users to access quickly the
right information at the right time and highlight how important it is for PIM tools to help users accomplish their tasks
efficiently. According to Zhou et al. [7], existing mobile PIM tools require extensive involvement of human users, and as
a result managing personal information such as to-dos and contacts consumes more time than needed. However, as the
information needs of users highly depend on their context while on the go [9], context can be adopted in order to enhance
PIM systems [10].

To the best of our knowledge, although the idea of taking advantage of context to provide adaptive services to mobile
users is not new, and while contact lists are one of the most frequently used applications on mobile devices [11], little
research has been conducted on predicting the next call a mobile user is going to make and providing a rearranged contact
sublist to replace traditional methods of contact repository access.

In [1], an algorithm that builds an adaptive speed-call list based on call logs is presented. Based on the observation that
outgoing communication follows a periodical pattern, five dimensions (day of week, weekend/weekday spans, time of day,
dayparts of a day, 1-hour slots of a day) are proposed as recommendation conditions.Whenever a user presses the call button,
the algorithm computes the Bernoulli probabilities of each dimension for each contact, sorts all contacts according to the
respective conditions’ maximum probabilities, and creates the speed-call list. However, the probabilities of the proposed
dimensions are considered separately, and are not combined as in our approach.
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In [12], a similar approach to predict outgoing calls analyzing mobile phone historical call log data is described. Three
dimensions are proposed to capture the frequency and regularity of communication behaviour. An important finding from
this research is that combining factors rather than exploiting each one independently leads to better results. The proposed
algorithm analyses historical data from a period of two years, a decision that adds computational load to the device and
seems to be unnecessary, since only a recent portion of communication history is needed to predict future behaviour [13].
Moreover, the weights that are assigned to each dimension seem to be arbitrarily decided, and the success rate is quite low
(below 40%) for the period of five weeks that the experiment was running, following however an upward trend.

Another attempt to predict outgoing calls of mobile users is described in [14]. The researchers have implemented a call
predictor for both incoming and outgoing calls. The outgoing call predictor constructs a probabilistic model capturing the
user’s behaviour based on call departure and inter-departure times. The prediction algorithm provides good results (for
example, a success rate around 70% for a prediction list with five entries). Although the researchers prove that only recent
history is needed to predict future communication behaviour, it is not clear whether the predictor takes into account all
historical call data or only a recent portion of the call log. The probabilistic approach presented is promising; nevertheless,
it seems difficult to incorporate other mobile and social contextual dimensions, such as location or personal preference. The
same researchers also propose another approach to predict outgoing calls [15], based on a naive Bayesian classifier, consid-
ering as important factors of the calling pattern the time period of day, the day of each call, and the ‘‘reciprocity’’ (call inter-
action between the user and the caller). This approach seems to provide slightlyworse results than the one presented in [14].

3. Methodology

Our research is based on two different mobile datasets: a large dataset from the NOKIA Lausanne Data Collection Cam-
paign [16] and a preliminary dataset that we have collected during an unrelated experiment that was organized separately.
This section first presents the mobile handset-based data collection method from our experiment and introduces the data
collected, as well as some preliminary observations. Subsequently, the larger dataset from the NOKIA campaign is described.
Then, we present in detail the context-based prediction procedure.

First, we present our rationale for choosing the context dimensions that will be employed in our methodology. When
considering context dimensions thatmight influence retrieval needs, it is easy to imagine that such dimensions could include
location, frequency, recency, time of day, day ofweek, andpersonal preference (user indicated favourite contacts). Obviously,
location was not available in our preliminary dataset, as the Android OS does not record user location for phone call events.
While location is available in the NOKIA dataset, this is recorded sporadically (hence not all calls could be associated with a
location). Additionally, withmany locations comes inherent uncertainty, as they are capturedwith a variety ofmethodswith
variable granularity and accuracy, depending onwhich sensors were available at the time on a user’s mobile (e.g., Wi-Fi, Cell
Tower, and GPS). Our work would hence need to incorporate an uncertainty management component, which is beyond the
scope of this paper. Thus, we chose not to employ location in order to be able to directly compare between the two datasets.

In addition, in previous work [17], we found that the role of personal preference (‘‘starred’’ contacts in Android) is
ambiguous, since there is no correlation between the ‘‘starred’’ status of a contact and the probability of a call being made
to that contact; hence we discarded this dimension. Temporal context (time of day and day of week) might depend on other
dimensions such as social relationship between user and contact, cultural norms, and user activity, and can be an indicator
of user or contact location etc.; thus it cannot safely be examined on its own without knowledge of these other types of
context, which of course are not available in our dataset. To support this argument, we present in Section 5 a preliminary
experiment that shows that the ad hoc addition of further dimensions does not result in improvements. For all the above
reasons, the safest dimensions that could be used as a first step to establish a baseline performance for a predictive system
were frequency and recency of communication, the effect of which in calling behaviour is extensively studied in [17].

3.1. Preliminary mobile dataset and users

In order to extract real communication data frommobile phones, we developed an Android application that extracts the
contact list and the call log from the mobile device. The application was delivered to 42 subjects (all of them located in
Greece) with Android smartphones; however, only 25 datasets were considered as valid, since some were incomplete (e.g.,
extremely small number of records in call log, coverage period of log being too short, too few contacts in their contact list).
Concerning the 25 subjects that we take into account in our analysis, 22 of them were male and 3 female, while their age
rangeswere from 19 to 39 years old, and theywere from varied backgrounds, thoughmostwere Computer Science students.
In total, the participants’ contact lists contained4185 entries.We found that, on average, each contact list contained167.4 en-
tries (mean =167.4, stdev=87.60,min=33,max=344). The extracted logs covered adifferent timeperiod in days for each
mobile phone (mean= 52.80, stdev= 35.23,min= 18,max= 170). On average, each usermade 449.88 calls (stdev= 98.12,
min = 182, max = 500). We should stress here that the Android platform limits the call log history to 500 calls.

3.2. NOKIA mobile dataset

TheNOKIA LausanneData Collection Campaign is a large-scale initiative that took place in theGeneva area in Switzerland,
from October 2009 to March 2011. The number of participants reached 185 (38% female, with two thirds of the population



4 V. Stefanis et al. / Pervasive and Mobile Computing ( ) –

aged between 22 and 33 years old) and data related to location, motion, proximity, communication behaviour, applica-
tion usage, etc. were collected, turning it into a rich mobile usage dataset. In this period, more than 240,000 calls (incom-
ing/outgoing/missed) were logged.

In our analysis, we focused on communication data, and specifically on users’ call logs. However, as previously, some
users participating in the campaign had to be excluded, as they were not considered valid for call log analysis. Some of them
had a call log covering an extremely short period of time, while others had too few call records or a very sparse call usage
of their phone. This is natural, since, as described in the documentation provided by NOKIA, there were users who left the
experiment early or others who often decided to turn off the recording software. After removing those with the undesirable
extreme characteristics (call log period < 30 days, call records < 100 and calls per day < 2.25—the minimum value for
the dataset from our experiment) we ended up with a dataset that consisted of 106 users. We cannot report on the average
size of the contact list, since the NOKIA dataset is an evolving log and not a ‘‘snapshot’’ as our preliminary dataset, meaning
that the number of contacts per user varies through the period covered. As in our experiment, in this dataset also the logs
covered a different period in days (mean = 374.98, stdev = 136.78, min = 33.96, max = 608.25). On average, each user
made 1928.75 calls (stdev = 1036.11, min = 214, max = 5101).

3.3. The ‘‘socialness’’ metric

Lee et al. [1] found that users in their study fell within two groups based on their perceived ‘‘socialness’’. Having selected
a suitable sample of users, we then wanted to see if they could be organized into clusters, based on their communication
behaviour and perceived ‘‘socialness’’. The need for this categorization is made greater because of the nature of the call logs,
which have varying lengths and densities. Since it is not desirable to dilute the call logs by massaging the raw data (e.g., by
normalizing), arranging the users into categories is a step towards ensuring the integrity of our conclusions. The obvious
first step would be to look at the sparsity of communication, i.e., the number of calls made per day; however, this would
not show emergent behaviour in terms of the ‘‘socialness’’ of a user. For the rest of the paper we use the term ‘‘socialness’’
not literally but to express the pattern of incoming and outgoing communication from the user’s mobile device. A user
could make many calls per day; however, these could be to a very few distinct contacts. Other, more ‘‘social’’ users could
also make many calls per day, communicating with many distinct contacts, while there are users that could make only few
calls, communicating only with a small number of contacts. Our purpose was to define a metric that reflects for each user
this social pattern of communication. More specifically, we were interested in examining how the calls to contacts were
distributed on two dimensions, i.e., the number of called contacts and relative frequency of calling for each contact, using
a single value to represent this pattern. As a result, we needed the value of this metric to get influenced by the number
of contacts called and the relative frequency, in a way that represents the aforementioned notion of ‘‘socialness’’. We thus
analyzed each user’s call log to examine the percentage of calls made to each of their contacts, as follows. For each user,
we took a list of all contacts to whom calls had been placed for their entire call log duration. For each of these contacts,
we calculated the percentage of calls made over the total calls made by the user. Having sorted these contacts and their
percentages in descending order, we calculated for each contact the difference from the previous contact (e.g., if there were
three contacts with a percentage of outgoing calls of 80%, 15%, and 5%, the differences would be 80%, 65%, and 10%). We then
calculated the means of all differences and used that as a metric to determine ‘‘socialness’’. The lower the metric, the more
‘‘social’’ a user is, since this means the user calls more people andwith less frequency. As an example, consider the following
case: user A for a given period of time communicates with only three contacts (40%, 40%, and 20% respectively), while for
the same period user B communicates with six contacts (with relative frequencies 40%, 20%, 15%, 10%, 10%, and 5%) and user
C with ten contacts (20%, 20%, 15%, 15%, 10%, 8%, 5%, 3%, 2%, 2%). Then, the ‘‘socialness’’ metric S shows that user C (S = 3.8)
is the more ‘‘social’’, user B (S = 12.5) follows, and user A (S = 20) is the least ‘‘social’’ user.

We ran a k-means clustering algorithm on these users, and found that users cluster optimally in three groups, for both
datasets. In the preliminary dataset, Group 1 (3 users) is the ‘‘least social’’ users, i.e., people who tend to make most of their
calls to just a handful of numbers, and we hypothesized that they are therefore most likely to exhibit regular predictable
behaviour. Group 2 (9 users) is the ‘‘averagely social’’ group, while Group 3 (13 users) is the ‘‘most social’’ users, in constant
communication with a variety of contacts, and thus likely to be most difficult to predict. In the NOKIA dataset, the ‘‘least
social’’ group (Group 1) consists of 4 users, while the ‘‘averagely social’’ (Group 2) and ‘‘most social’’ (Group3) groups consist
of 20 and 82 users, respectively (see Table 1).

3.4. Prediction procedure

In order to evaluate the role of the frequency and recencymetrics in predicting the likelihood of placing a call to a contact,
we used the extracted datasets from our users to perform a series of predictions, using the concept of a sliding training
window within the datasets, which is used to make predictions regarding the next call. In [13], it is shown that a small
subset of recent data from the historical dataset for training could be adequate to predict future behaviour, and hence we
do not need to use a cumulatively expanding training set. As such, we define the training window t to be of a fixed temporal
size,measured in t-days, i.e., temporal periods of 86400 s (1 day). All callsmadewithin this timewindoware used as training
data, upon which we attempt to predict the person to be called next. Within this training window t , we also define a fixed
recency window r measured in hours, which contains all the calls made in a fixed time period from the start of the training
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Table 1
‘‘Socialness’’ characteristics for the two datasets.

Preliminary dataset NOKIA dataset
Calls/day Number of users Average ‘‘socialness’’ Calls/day Number of users Average ‘‘socialness’’

Group 1 13.73 3 (12%) 0.09983 5.74 4 (3.8%) 0.09916
Group 2 11.85 9 (36%) 0.03155 5.66 20 (18.9%) 0.01956
Group 3 10.7 13 (52%) 0.01232 5.33 82 (77.3%) 0.00579

Fig. 1. Operation of the sliding training window.

window. All calls within this recency window r are used to give temporal significance to contacts, in contrast with training
window t , which is used to capture the overall (historical) significance of a contact.

The prediction procedure works as follows. Suppose that we wanted to see if we could predict which contact was called
at position x in the call log (Fig. 1), which must represent an outgoing call. Since we intend to support the retrieval task, we
do not make predictions for incoming calls. We note here that predictions are made only for numbers that correspond to
contacts, since there is no point in providing support for numbers that are not in the contact list. We then pick up all the
calls (incoming and outgoing) in the call log that took place within the specified number of t-days from the timestamp of
call x. We use both the incoming and outgoing calls to capture the effect of reciprocity as described in [18]. This training
window t can thus have a varied number of calls, which are used as training data on which the prediction is made. Once a
prediction has been made, we record the outcome, and move to the next call. This way, we work through the user’s call log,
call by call, and try to predict each one (obviously the earliest calls are only used as training data and not for predictions).

As can be seen, our algorithm’s performance does not depend on the actual size of the user’s contact list, but instead on
the user’s ‘‘socialness’’, i.e., the number of contacts that the user actually communicates with, and the temporal pattern of
interactions with these contacts.

3.5. Calculation of prediction score

In our approach, personal information items such as contacts are represented as context augmented vectors (x1, x2,
. . . , xn), where xi is the value of a context dimension i that characterizes the item. Our technique is based upon the context
dimensions of contact use frequency and recency. Other dimensions of contact context can, of course, be incorporated in
a predictive algorithm, and, in fact, in our conclusions we discuss how further context dimensions can possibly help with
specific user and task conditions. However, the purpose of this paper is to investigate the role of these two dimensions of
context; thus we focus solely on these. For each contact in the user’s contact list, we assign a score, comprised of the sum of
a weighted score F(c) that reflects the frequency with which the contact has been used in the given training window, and a
further weighted score R(c) that reflects the temporal distance of the latest use of that contact within the training window.
The equation used to assign a score to each contact is

Π(c) = wf × F(c) + wr × R(c),
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where Π(c) is the score assigned to the contact c , and wf and wr are the weights for the frequency score F(c) and recency
score R(c), respectively. F(c) is calculated as the percentage of the communications (incoming and outgoing) within the
training window between the user and the contact. R(c) is calculated as the percentage of the time interval between the
start of a defined recency timeframe until the most recent communication between the user and the contact over the entire
duration of the recency timeframe. In the case that there is no contact between them within the recency timeframe, R(c)
is zero. Thus, for each call, we can pick the top n contacts based on this score and offer these as likely candidates for our
prediction.

4. Experimental results

4.1. Experimental considerations

Prior to proceeding with our experiments, we needed to determine an appropriate length for the training window that
would be used, as well as to find a suitable temporal threshold for the recency score. Given the fact that our preliminary
dataset concerned a significantly smaller period of time than the NOKIA dataset, we used the preliminary dataset as the
determinant for these variables, since we wanted to run our experiments using the same parameters on both datasets. The
recency threshold is desirable, as we have empirically found that recency of communication is influential, with a decayed
effect, for a period of 6 h. Experimenting more with our preliminary dataset, we observed marginally better results for a
timeframe for 12 h, so the temporal threshold was set to 12 h.

In [14], the researchers demonstrated that the accuracy of their call predictor did not improve in line with the size of
the training data in their prediction work. This is a reasonable outcome, since, as people change behavioural patterns and
perhaps interactmore closelywith different social groups during the course of time, older interaction data becomes not only
redundant, but can be detrimental to the success of predictions. In our case, because the length of our preliminary dataset
call logs was 52 days on average, and we needed to compare performance with the significantly longer NOKIA call logs on
the same terms, we could not experiment with too large a training window. However, we did experiment further on the
training window length using the NOKIA dataset alone, and we present our findings later. The training window should be
long enough to provide adequate data but, at the same time, a training window of more than two weeks would likely fail
to capture dynamic changes in a user’s calling behaviour (e.g., taking a week off to go on holiday). Additionally, a training
window of less than seven days would fail to include behavioural changes that could be attributed to weekends (and thus a
change of social circumstances).We thus examined the performance of our technique, using equal weights for the frequency
and the recency components, and compared the success of the techniquewith all possible combinations of a trainingwindow
of 10 and 15 days and a recency threshold of 6 and 12 h. By examining the success means for all users, we found that our
technique gave optimal scores with a ten-day training window and a recency threshold of 12 h, though the performance
was not much better than in other combinations.

Finally, we needed to consider suitable suggestion list lengths for our experiments. In [14], several sizes of prediction
suggestions (up to 20) are considered, thoughwe felt that amobile interface thatwould offer quick access to a likely desirable
contact should not display more than eight suggestions, i.e., the approximate maximum list entries that can fit on a single
mobile screen as shown by variousmodern devices [17], as this would force the user to further interact with the interface by
scrolling, thus detracting from the usability of such a system. We decided to perform experiments for 1 (straight hit/miss),
3, 5 and 8 suggestions.

4.2. Baseline experiments

Apart fromperforming a search on the alphabetic phonebook, two othermethods are usually available on a typical smart-
phone when its user wants to retrieve a contact in order to start a phone call: using the list with the most frequently called
contacts or the list with themost recent calls. A simulation of these twomethods is possible using executions of the prediction
algorithm with pairs of weights (wf = 1, wr = 0) and (wf = 0, wr = 1), respectively. We consider these executions as
a baseline experiment, the results of which, compared with the results of the executions where both dimensions are com-
bined, reveal the improvement of our approach over the traditional contact retrieval methods. For the preliminary dataset,
the average performance of the two methods for each user group and for different suggestion list lengths are shown in
Fig. 2(a) and (b).

If we equate these performances to the use of the call log screen and the frequently used contacts screens on a real device,
wewould conclude that most ‘‘social’’ users (Groups 2 and 3) in the preliminary dataset could only expect to find the person
they actually want to call at the very top of the call log around 40% of the time. Generally, success rates are between 53% and
61% for suggestion list size up to 8 entries. Presenting fewer suggestions seems to have a very small impact on the likelihood
of retrieval. With regard to using a frequently called contacts list, users can find their desired contact at the very top of the
list around 17–32% of the time, while an almost linear increase in performance takes the chance of finding the said contact to
66–80% somewhere in that list, if it contains up to 8 contacts. Group 1 (the least ‘‘social’’ users) exhibits a similar behaviour,
but with much better performance (60–77% on the call log and 59–96% on the frequently called contacts list respectively,
depending on the list size), as expected.
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Fig. 2. (a, c) Performance using only the frequency dimension (equivalent to a list of most frequently used contacts). (b, d) Performance using only the
recency dimension (equivalent to using the standard call log).

When performing the same baseline analyses in the NOKIA dataset (Fig. 2(c) and (d)), we observe that, though the figures
are not quite the same, the behaviour overall is similar, and it confirms the findings of the analyses in the preliminary set. The
least ‘‘social’’ group (Group 1) exhibits better performance that approaches 74% and 95% with just the recency or frequency
weighting enabled, for 8 suggestions. Similarly, for Group 3 (most ‘‘social’’), which is the largest group, the prediction scores
are significantly worse in both cases. The results from these baseline analyses are revealing. First, when looking at the most
familiar of contact retrieval tools (i.e., the call log), we notice that, for the largest groups and thus most users, even if the
number of available suggestions (8) is large, there is, at best, only a 54% chance that the desired contact will be found there.
In fact, it seems to matter little if more than three recent calls are present in the list, as the prediction success rates do
not improve significantly with more than three candidates. We observe that using the ‘‘frequently called’’ list could yield
better results, with the possibility of finding the actual desired contact therein increasing with the number of suggestions
offered by the list. Even for Group 3, the success rate approaches 74% (NOKIA users). Interestingly enough, while the call
log is a feature that is quickly accessible in most phones, the frequently called numbers list, which is likely to yield better
results, is often less accessible, as it is hidden deeper in the contact list application structure. In any case, we show that the
interfaces currently meant to improve access times to desired contacts and minimize the information retrieval problem are
not optimal, and leave considerable room for improvement.

4.3. Actual experiments

Our experiments are divided into two distinct sets that explore the relationship between the importance of the frequency
and the recency criteria, as discussed above. The methodology of the experiments remains precisely the same, except that
in the first run (Set A) we are only interested in knowing whether the actual called contact is in the list of suggestions (a
‘‘hit’’), while in second run (Set B) we keep a track of the position in the suggestion list that the contact is found, in the case
of a hit. In this case, a suitable score to rate the quality of the prediction is given, which ranges in increments of one unit
between [1..n] that reflect the number of positions available within the suggestion list (higher is better). For the calculation
of the scores, we take into consideration just those circumstances where a hit has been achieved; thus the scoring reflects
the quality of the ‘‘hits’’ and not a scored performance of the algorithm overall.

4.3.1. Experiment set A—hit or miss
The Figs. 3 and 4 show the success rates for all users. The average success for each suggestion list size for all users is

shown in Fig. 3(a), while Fig. 3(b) shows the performance for all suggestion list sizes per group, and, finally, Fig. 4 shows
the precise breakdown for each list size for all groups. The first conclusion that is immediately obvious is that using the
frequency or the recency dimensions alone offers worse performance than any combination of weights. This indicates that
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Fig. 3. (a) Average prediction success of the entire population, broken down by suggestion list size. (b) Average prediction success for all list sizes, broken
down by group, for the preliminary (P) and NOKIA (N) datasets, for all (wf , wr ) weight combinations.

Fig. 4. Breakdown of each group’s (Gx) performance for all suggestion list sizes (xS), for all (wf , wr ) weight combinations. (a) Preliminary dataset. (b) Nokia
dataset.

the standard mobile device screens that provide a call log and a most frequently used contacts view are less than optimal,
and that an interface that would provide call suggestions based on both metrics is much more effective. It is clear also from
these results that Group 1 has consistently the best performance, while Groups 2 and 3 follow. This confirms our hypothesis,
as Group 1 exhibits the most predictable behaviours (frequent calls to a limited number of users). Additionally, we observe
that, as the size of the suggestions list grows, the role of the weights becomes less important. For a small suggestion list (1–3
suggestions), the weight of the recency dimension seems to play a more important role in obtaining a ‘‘hit’’, which is a clear
indicator that call recency is more important than call frequency for determining the importance of a contact.

4.3.2. Experiment set B—scored performances
Our first experiment set showed that, for list sizes greater than 3, the weighting balance of the frequency and recency

dimensions is practically immaterial, as the performance remains more or less constant. To investigate the quality of the
suggestions (i.e., how closewas the contact thatwas actually called to the top of the suggestion list, and thus likely to be seen
sooner by the user), we performed the second set of experiments as previously described, for all suggestion list sizes apart
from the one (as this is equivalent to the one suggestion hit-or-miss experiment reported earlier) (Figs. 5 and 6). In this case,
we notice that, generally, the algorithm offers good placement of the actual correct predictions within the suggestion list
(Fig. 5(a)), which is, on average, quite close to the top in each case. Again, we note that the recency dimension seems to offer
better performance when weighed favourably over the frequency dimension. We note also (Fig. 5(b)) that users of Group 1
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Fig. 5. (a) Average scored prediction performance for the entire population. (b) Average scored performance for all suggestion list sizes (xsg) (the purple
line shows the theoretic optimal average score of 5.33), for the preliminary (P) and NOKIA (N) datasets, for all (wf , wr ) weight combinations.

Fig. 6. Breakdown of each group’s (Gx) scored performance for all suggestion list sizes (xS), for all (wf , wr ) weight combinations. (a) Preliminary dataset.
(b) Nokia dataset.

enjoy the best performance, which is followed by the performance experienced by Group 2 and Group 3, again confirming
our earlier hypothesis.

4.3.3. Experiment set B—training window (NOKIA dataset)
Since data from our preliminary dataset were restricted to a relatively short period of time, the NOKIA dataset provided

uswith the opportunity to investigate the effect that different trainingwindow lengthswould have on the prediction results.
As we have already explained in a previous paragraph describing our experimental considerations, the length of the training
window should be such that at the same time it represents accurately the communication pattern of the user and captures
changes in this pattern.

As the prediction results for Group 3 (the most social group) were lower compared to those for the other two groups
and Group 3 has by far the most members, we performed some more tests with changing training window lengths only for
this group. We ran again our prediction algorithm for Group 3 with the same suggestion list (1, 3, 5, 8) and recency window
(12 h) lengths, wf = 0.1 and wr = 0.9 (the best weight combination for Group 3), while the training window length was
made a variable with the values of 5, 10, 30, or 90 days.

Fig. 7 shows how the prediction success rate changes for different training window lengths for each suggestion list size.
We note that the variance in success rates is negligible for the different training window lengths. Fig. 8 shows how the
average prediction score changes for different suggestion list sizes for each training window length. As expected, again,
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Fig. 7. Average prediction performance on the NOKIA dataset for different training windows.

Fig. 8. Average scored performance on the NOKIA dataset for different training windows.

there are not significant differences regarding the average score for the different training window lengths. We thus see
that communication behaviour does not change significantly through time for the NOKIA users, and that it can effectively
be captured by a period of just five days. This is contradictory to our previous assumption that a training window would
need to include a weekend period; however, the differences in performance can be attributed to the nature of the users
in the dataset. By contrasting the average number of calls made over weekends to those made during the weekdays, we
can observe that there is a difference of just 1.06 calls per day (4.65 cpd and 5.71 cpd, respectively). In any case, we show
that the computational load can be safely decreased by choosing a smaller training windowwithout detrimentally affecting
performance, something that is important when considering applying these techniques to resource-constrained mobile
devices.

5. Preliminary investigation of temporal context

Although the scope of this paper is to assess frequency and recency of use as context dimensions in a predictive model
for contact retrieval, in this sectionwe present a preliminary analysis on the effect of adding a third dimension in ourmodel.
Since frequency and recency of use describe behavioural context, we wanted to investigate the effect of a non-behavioural
context dimension. In Section 3, we discussed the difficulties in extracting other contextual information (e.g., location, task)
from our datasets. However, temporal context was available, and according to literature it can be used to detect patterns of
movement [19] and semantic information about location [20]. More specifically, since people tend to visit places at specific
times of day (e.g., home at night, office/work in themorning, restaurants at lunch time, etc.) [21], the significance of locations
may vary with the time of day [22].

Based on these remarks, we decided to include the time of day (as an indicator of semantic location) as a third contextual
dimension. In [1,15], temporal context is obtained either hourly or by segmenting the day into four non-equal parts; hence
there does not seem to be a consensus on how to optimally represent this type of context. In our case, we split each day in
three logical dayparts:workday (08–16), evening (16–24), andnight (00–08). In order to compute the score of this dimension
for a contact i at a datetime dt, we count all communications with this contact that were made during the training window
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Fig. 9. (a) Prediction performance for each dimension separately. (b) Performance comparison for the three combined context dimensions (frequency,
recency, time of day).

within the daypart that corresponds to dt, and we divide by the total count of communications within this daypart for the
specified training window.

Aswe can see fromFig. 9(a), the dimension of timeof day aloneprovides comparable performance results to the frequency
dimension. Fig. 9(b) shows the algorithm’s performance when adding the third dimension of time of day for Group 3, which
has the largest margin for potential improvement. For these results, we tried several weight combinations, and found no
significant differences in performance; hence we present the agnostic situation where we know nothing about the user and
hence set all weights to an equal value. As we can see, adding a third dimension actually shows a slight decrease in average
performance, despite our expectation that it would improve the prediction success rate; hence it seems that the inclusion
of a new dimension in a predictive model requires a thorough investigation of its effect on users’ calling behaviour.

6. Comparison with other algorithms

An indirect comparison of our results in predicting the next contact to be called can be contrasted against the findings
of Lee et al. [1], Barzaiq and Loke [12], and Phithakkitnukoon et al. [14], particularly for predicting using five suggestions.
Lee et al. [1] achieve performances greater than 75% for just one type of user (easily predictable ones) while the other
two groups that emerge in their study do not exceed 50% and 30% average success, respectively. Barzaiq and Loke [12]
achieve a 40% success on average for five suggestions after five weeks’ worth of training and adapting their system. Finally,
Phithakkitnukoon et al. [14] achieve a 70% average success rate for the five-suggestions prediction list.

The algorithms used in all cases are much more complex in nature than our own technique, which achieves an average
success for the entire population of approximately 80%, while the performance even for Group 3 (who are the most social
and thus unpredictable users) hovers around 70–73% (Fig. 10). Finally, the scored performance experiment set shows that
the algorithm offers good ranking for the predictions within each suggestion list.

In order to perform a direct comparison between our model and the other algorithms, we decided to implement them
and assess their success rate over the NOKIA dataset. We implemented the algorithms of [1,12], since for the one presented
in [14] all the necessary details are not clearly described. As these algorithms provide five suggestions to the user, Fig. 11
shows a comparisonwith our algorithm’smaximum,minimum, and average success rates for a suggestion list of five entries
and the respective rates for the simulated frequently called contacts list (wf = 1, wr = 0) and call log list (wf = 0, wr = 1).

It is apparent that, apart fromGroup 1,where all approaches (except the call log list) work almost equallywell, for Groups
2 and 3, that aremore difficult to predict, our algorithmprovides significantly better results. For these groups, the algorithms
of Lee et al. [1] and Barzaiq and Loke [12] prove to be less efficient, even compared to traditional contact retrieval means.

7. Discussion and further work

In the previous sections, we have presented in detail the results of our experiments. A significant finding is that by com-
bining the dimensions of frequency and recency we achieve better prediction results than by considering each dimension
separately, which is in line with the findings of Barzaiq and Loke [12]. The performance for ‘‘least social’’ types exceeds 90%,
showing that for such users further use of context is not required. For the ‘‘most social’’ users, significant room for improve-
ment is displayed, which could be addressed by considering additional types of context such as location and time. However,
as shown in Section 5, adding new dimensions requires extensive analysis in understanding how they affect retrieval tasks.
Furthermore, as was expected, and as Phithakkitnukoon et al. [14] also note, the larger the suggestion list, the higher the
prediction success rate is. However, this positive effect decreases as the suggestion list increases, and having in mind that
small screens of mobile devices usually display only a few items of information, it seems that there is no point in providing
more suggestions. Another interesting observation is that, as the size of the suggestion list increases, the role of the weights
becomes less important.
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Fig. 10. Breakdown of each group’s performance for a suggestion list size of 5, for the preliminary (P) and NOKIA (N) datasets, for all (wf, wr) weight
combinations.

Fig. 11. Comparison of the results of Lee et al. [1], Barzaiq and Loke [12], frequently used contacts list, call log, and our algorithm (max, min and average
performance) on the NOKIA dataset for five suggestions.

The observation of Lee et al. [1], that the existence of groups of users with different social communication behaviour
influences the prediction performance, was also confirmed from our experiments (though we find three distinct groups in-
stead of the two mentioned in that study). The variance of the results due to the different communication pattern of each
group is a concrete indication that weights should not be static, but dynamic for each user. In addition to this, we believe
that the weights should be dynamic even for the same user under different contexts.

Supporting personal information retrieval through adaptive UIs requires that ‘‘standard’’ behaviour is first understood,
so that we can design an intervention that can have a predictable and desirable effect on it. The question thus arises of how
we could utilize these findings to aid user behaviour, through designing interfaces informed by this knowledge. First, to our
knowledge, there is no study about the effect of the availability of calling lists or frequently used number lists to the actual
calling behaviour of users. Does this information affect the behaviour of users, i.e., does it exert influence on themaintenance
of strong social links with other users by making access to calling them easier? Would a system that always predicts the
right person to call next prevent users from making contact with other less important users? Perhaps the introduction of
‘‘false positives’’, particularly for users who are not very social, could encourage them to communicate more often with a
wider variety of contacts. Perhaps, also, a user interface should not only help users find the next contact to call quickly,
but also remind them of contacts that used to be important but have not been contacted for some time. And then, is the
concept of ‘‘calling’’ the optimal means of contacting someone? Would an interface that suggested not only the person but
also the mode of contact to something ‘‘more appropriate’’ than just text or talk (e.g., Facebook message) be desirable, or
help increase participation in social networks rather than one-to-one communication? In this sense, the discovery of distinct
groups of users in terms of their communication behaviour is fortunate, as, for example, the most social group’s behaviour
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could be used as a baseline, and further research could be undertaken on how close a system can bring to this behaviour
users from other groups. We thus see our work of understanding and predicting communication patterns as an essential
first step into designing persuasive user interfaces for users.

Although we start with the contact list and the task of facilitating contacts retrieval from it as a problem domain, we
believe that this approach could extend and apply to other information management problems that involve context as
well. As a first step, we intend to introduce more contextual dimensions to our algorithm, since in this work we focus on
behavioural factors such as frequency and recency of communication. The same analysis could also extend to include SMS
communications or other forms of social interactions (e.g., social networking).

To conclude, the previously discussed observation about the dynamic nature of dimensionweights for different users and
different contexts is an indication that a more generic approach that would not involve manual adjustment of weights is
needed. In previous work [23], we proposed the application of a dimensionality reduction technique to context augmented
personal information items, such as entries in a contact list, in order to extract a small number of features that could
accurately represent the original items and their relationships. Our future experiments include the application of this
technique to the available datasets for the problem of predicting the next contact to be called. We hope that this work could
provide us with valuable insight and understanding of mobile users’ behaviour, allowing us to proceed with the design
and experimentation of novel persuasive mobile user interfaces that help users manage their personal information more
effectively. We aim to test these longitudinally in the field as a replacement to traditional contact list access methods under
real-life conditions.
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