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ABSTRACT 
Discovering the user’s current physiological state allows a 
mobile device to self-adapt its behavior in such a manner that 
the services it provides to the user are delivered using the 
optimal modalities for the current circumstances. Furthermore, 
interpretations of the user’s physiological state might allow its 
translation into an emotional state and emotional context 
awareness, which can opens the door to a new range of 
pervasive personal services. In this paper, we investigate the 
possibility of making a mobile device aware of where it is being 
worn on a users’ body. We also propose an algorithm to allow 
the mobile device to understand its user’s current level of 
activity without the requirement for strategically positioned 
sensors. This type of context awareness may enable us to design 
better interruption and alerting strategies, as well as informing 
the intelligent choice of interaction modalities on behalf of the 
device. 

Categories and Subject Descriptors 
H.5.2 [User Interfaces]: Input Devices and Strategies, 
Interaction Styles 

General Terms 
Algorithms, Experimentation, Human Factors 

Keywords 
Embedded Sensors, Gait Analysis, Context Awareness 

1. INTRODUCTION 
Knowledge of a user’s physical activity state has been the 
subject of research for numerous fields of science. The analysis 
and quantification of human gait in particular, has allowed 
physicians to study and diagnose conditions such as cerebral 
palsy, Parkinson’s disease and a range of neuromuscular 
disorders. Orthopedic treatment and post-traumatic care has 
significantly benefited from the study of kinematics, while 

recently gait analysis has been used to aid fall prevention and 
monitoring of physical wellbeing in older adults as in [1]. 

Gait analysis is carried out using dedicated and customized 
hardware and software systems. Photography and video are 
common low-tech approaches to gait analysis that depend on 
expert observation. More sophisticated systems, such as motion 
capture using active and passive “markers” positioned on a 
subject’s body, are increasingly common and have become quite 
popular also in the cinema and film industry. Another approach 
to gait analysis uses micro-electromechanic sensors (MEMS), 
normally 1, 2 or 3-axis accelerometers, positioned strategically 
on a subject’s body. These sensors measure the forces acting on 
the user’s limbs and consequently translate these to motion. 

A common example of gait analysis using MEMS is 
pedometers, or step counters. These are normally positioned 
(clipped) on a user’s belt and measure the number of steps taken 
while worn, by monitoring vertical acceleration forces. 
Pedometer data has been shown to be useful for a range of 
purposes, e.g [2],[3],[4]. 

Accelerometers have recently started to appear as sensors 
embedded on common mobile devices, where they are used 
primarily as pedometers (e.g. Nokia 5500, SonyEricsson 
W710i), screen orientation sensors (e.g. Nokia N95), or 
alternative input modalities (e.g. SonyEricsson W910i – shake 
control). We believe that as accelerometers become more 
ubiquitous on mobile devices, they might become a useful tool 
for personal context awareness. 

As previously mentioned, accelerometer data can be used to 
count users’ steps. When observed over time, this count can 
provide a user’s walking pace (slow, normal, fast, running). A 
person’s walking pace can provide clues to their current 
emotional status. For example, one can think of a situation 
where a person is walking quickly to make an appointment, or 
rushing between desks and offices in a building to meet a 
particular deadline for a task. People in these situations are very 
likely stressed and preoccupied with their current activity and 
goal, thus being interrupted by their mobile device to receive a 
phonecall or an SMS would probably be frustrating. 

2. Determining User Activity State 
Pedometers are quite successful in measuring user steps, 
achieving an error rate of 5% for the most accurate type of 
devices. However, this is only possible if they are worn in an 
appropriate manner that affords them little freedom in relation to 
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the user’s limbs (upright position, clipped on a belt or strapped 
around the user’s thigh). These conditions make measuring 
acting forces relatively simple: Acceleration on the vertical (Y) 
axis of the pedometer, which is aligned with the body’s vertical 
axis, is all that is required to figure out whether a step has been 
taken. In contrast, users carry their mobile devices on or near 
their bodies, in various places and in a fairly loose manner that 
affords devices a fair amount of freedom of movement and 
rotation while being carried. This means that a device with a 3-
axis accelerometer seldom has any of its axes properly aligned 
with the body’s vertical axis when carried around.  

The most common places for mobile devices to be carried are: 
trouser hip pockets, jacket and suit pockets (inner and outer), 
handbags, or neck straps. Walking and running affect variable 
force and acceleration patterns on these devices, depending on 
where they are worn. For example, head winds will flail an open 
jacket around, making the body only partly responsible for any 
movement of a device in a jacket pocket. Similarly, many 
female users carry their phones in handbags which move fairly 
independently of the rest of the body and tight-fitting trousers or 
jackets present rather inconvenient locations to store a mobile 
device.  Finally, because mobile devices are randomly placed 
and carried, it is not reasonable to assume that monitoring a 
single axis can yield any useful results (Figure 1). This  may be 
overcome if it were possible for the device to be calibrated 
every time it is worn on the user’s body, so the position it is in 
before walking starts is computed. Naturally though, this would 
be rather inconvenient for any user, as they would have to stand 
still for some time after putting the device in their pockets or 
bag. 

With a 3-axis accelerometer, which is commonly found on most 
sensor-enabled devices today, one can determine the overall 
forces acted upon the device, irrespective of its orientation, as a 
vector sum of the acceleration on the X, Y and Z axes. While 
not as optimal as determining the vector sum parallel to the 
user’s Y axis (thus measuring only vertical forces), this requires 
no calibration of the device. 

 
Figure 1: A pedometer’s axes are well aligned with those of 
the body, when clipped on a user’s belt (left). In contrast, a 
device’s axes are randomly oriented in relation to the body 

axes when it is carried in a pocket (right). 

3. GAIT ANALYSIS USING EMBEDDED 
3-AXIS ACCELEROMETER 
We began our analysis by observing the data patterns obtained 
when the device (SonyEricsson W910i) was worn on varying 
locations around a user’s body. We asked 13 participants (8 
male, 5 female) to walk the same fixed-length route at a 
comfortable (normal) pace with the device worn on 5 different 
locations, as follows:  

Male Participants: Closed jacket inner pocket (CJIP), closed 
jacket outer pocket (CJOP), open jacket inner pocket (OJIP), 
open jacket outer pocket (OJCP), trousers hip pocket 

Female Participants: Closed jacket inner pocket, closed jacket 
outer pocket, open jacket inner pocket, open jacket outer pocket, 
handbag 
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Figure 2: Examples of data output from various device 

positions (Y axis shows acceleration in milliG, X axis is the 
reading id) 
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Figure 3: Acceleration intensities and means for various 

device locations on the body 
 

Since every participant had different physical characteristics, the 
number of accelerometer data samples collected from each 
person varied (taller people required less steps to complete the 
route). For the analysis though, for each participant, we 
considered 200 samples from the median of the number of 
samples collected. We looked at the mean acceleration imparted 
on the device for each  

location, as well as the standard deviation, which we considered 
akin to “spectrum frequency” if the sinusoidal behavior of the 
signal data was taken into account. We also considered the ratio 
of standard deviation/mean as a metric akin to the “intensity” of 
the signal. 

The graphical representations of our results (Figure 3) show that 
there is a distinctly higher signal “intensity” when the device is 
placed in the trouser pocket, which is somehow expected as 
many pedometer type devices perform optimally when attached 
to the hip. From these results we can also see that there is very 
little to distinguish the signal patterns when the device is located 
in other places in a garment. It could thus be argued that it is 
only possible to determine whether the device is carried in the 
trouser pocket or not.  

4. PUTTING THE MOBILE DEVICE IN 
ITS USER’S SHOES 
Looking at the actual data patterns of trouser pocket and jacket 
pocket and handbags (Figure 2), we observed that while a very 
clear pattern of steps can be detected in the former case, in the 
latter cases, it is very hard to determine whether steps have been 
taken as the “peaks” and “valleys” of the signal are relatively 
close in terms of absolute value. Table 1 below shows the 
relative inaccuracy of the embedded 3D accelerometer in 
detecting steps. To address this problem, we decided to pass the 
data through a transformation filter, based on the following 
logic: 
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In this expression, T(Di) is the transformed data vector Di, which 
is transformed through multiplication by 1±τ. The constant t is 
the mean “intensity” (stdev/mean) observed from measurements 
using the trouser hip pocket. The vector Di is amplified by (1+ 
τ) if its magnitude is greater than that of the previous vector in 
the measurement series and the ratio of the two is greater than 
1+λ, where λ is a threshold value that allows control of the 
“jitter” level in the signal. This is effectively the rate of change 
in the signal value to distinguish between jitter and actual force 
imparted on the device. Similarly if Di’s magnitude is less than 
that of its previous vector and the ratio of the two is less than 1- 
λ, then the vector Di is transformed through multiplication by 
(1- τ). A vector Di is only transformed if it falls within one 
average standard deviation (a) of 1000mG (1000mG = 
acceleration on the device caused by the earth’s gravity). The 
constant a is again calculated as the average of all standard 
deviations observed from measurements using the trouser hip 
pocket in our experiment. 

5. Results & Conclusions 
We performed an analysis of the effect of the vector 
transformation process on the ability of the mobile device to 
accurately measure the number of steps taken by the user. 
Again, we positioned the device in various locations around the 



body, and measured the average steps & detection rates for a 
fixed route for our participants. As can be seen in the graph 
below (Figure 4), the algorithm behaved correctly by amplifying 
the signal in situations where steps were actually taken, and was 
also successful in identifying the cases where the user remained 
relatively static.   

Table 1: Percentage of steps not detected or over-detected 
using untransformed and transformed data (negative 

percentage shows overestimation).  

Threshold=0.12 

 

Raw 
Trans- 
formed actual 

Raw  
Missed 

Trans-
formed 
Missed 

Trousers 27 60 47 42.55% -27.66% 

CJIP 8 45 45 82.22% 0.00% 

CJOP 10 55 46 78.26% -19.57% 

OJIP 8 54 47 82.98% -14.89% 

OJOP 9 54 47 80.85% -14.89% 

Average     73.37% -15.40% 

Threshold =0.13 

 

Raw 
Trans- 
formed actual 

Raw  
Missed 

Trans-
formed 
Missed 

Trousers 23 50 47 51.06% -6.38% 

CJIP 7 29 45 84.44% 35.56% 

CJOP 9 50 46 80.43% -8.70% 

OJIP 7 44 47 85.11% 6.38% 

OJOP 8 44 47 82.98% 6.38% 

Average     76.81% 6.65% 

Threshold =0.14 

 

Raw 
Trans- 
formed actual 

Raw  
Missed 

Trans-
formed 
Missed 

Trousers 19 46 47 59.57% 2.13% 

CJIP 7 17 45 84.44% 62.22% 

CJOP 7 42 46 84.78% 8.70% 

OJIP 6 36 47 87.23% 23.40% 

OJOP 7 34 47 85.11% 27.66% 

Average     80.23% 24.82% 

 

To measure the number of steps taken we observe the ratio 
between current and previous reading. If the ration exceeds a 
certain threshold, we consider the force as a step taken. The 
results obtained with the untransformed data and the 
transformed data are shown in Table 1. 
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Figure 4: Transformed acceleration vectors. The middle 

part of the graph represents a period during which the user 
was standing, which was correctly interpreted by our 

algorithm 
From this table, we can see that although our algorithm does not 
perform optimally in all circumstances, it can be applied to 
bring the accuracy of a pedometer function on a mobile device 
to usable levels. 

Our conclusions and contributions from this work are two-fold: 
Firstly, we show that it is possible to distinguish between 
locations of the body where the device is worn but only between 
“trouser hip pocket” and “rest of body”. This can allow a device 
to choose the modalities it needs to use to notify its user (e.g. 
when in jacket, vibrate and ring at a medium volume, when in 
trouser pocket, ring loudly only etc). Secondly, we show that it 
is possible to amplify 3D accelerometer vectors using 
appropriate logic, in order to accurately estimate a user’s 
walking pace and subsequently make inferences regarding their 
emotional state. We are continuing our work in applying this 
knowledge in a range of situations, with the hope to investigate 
further the effect of our findings on decision support for user 
task interruption, location-based services and multimodal 
interaction with users’ mobile devices and services, such as self-
adaptive music playlists, well-being applications and adaptive 
calendar reminders. 
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