

An interface for context-aware retrieval
of mobile contacts

Abstract
Our work discusses a mobile contact retrieval interface
which attempts to contextually predict the contacts a
user is likely to need access to, in order to facilitate the
retrieval process. We compare our prototype
implementation with retrieval from traditional
applications (contact list and call log) in a preliminary
lab experiment and discuss our findings from user
behaviour. We conclude with suggestions on how to
improve this interface in order to further enhance the
retrieval process.

Author Keywords
Mobile contact lists; Context-Awareness; Mobile
information retrieval

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
Though retrieving contacts for the purposes of
communications is possibly one of the most frequent
activities when using a mobile device, surprisingly little
research has been carried out on how to improve the
user experience by introducing context awareness to
such interfaces. In previous work [1] we have shown
on a theoretical basis through simulated retrieval tasks,

Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first

page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the Owner/Author.

Copyright is held by the author/owner(s).

MobileHCI 2013, Aug 27 – 30, 2013, Munich, Germany.

ACM 978-1-4503-2273-7/13/08.

http://dx.doi.org/10.1145/2493190.2494432

Vassilios Stefanis
University of Patras / CTI
Rion, 26504
Patras
Greece
stefanis@ceid.upatras.gr

Andreas Komninos
Glasgow Caledonian University
70 Cowcaddens Rd.
Glasgow G4 0BA
UK
andreas.komninos@gcu.ac.uk

Athanasios Plessas
University of Patras / CTI
Rion, 26504
Patras
Greece
plessas@ceid.upatras.gr

John Garofalakis
University of Patras / CTI
Rion, 26504
Patras
Greece
garofala@ceid.upatras.gr

how mobile users can benefit from mobile social
context, especially in the case of mobile PIM (Personal
Information Management) items retrieval, such as
contacts, multimedia content, emails etc.

As a first step in our research, we have focused on
mobile contact lists, which as they are getting bigger
[2], among others to incorporate contacts from several
sources (e.g. phone, email, Skype, Facebook etc.),
pose a significant cognitive load to the mobile user for
the task of contact retrieval. Based on the analysis of
mobile call log data presented in [3], we identified
several context dimensions that play an important role
in mobile contacts’ communication usage and could be
used in a vector context model that could be adopted
for predicting the next contact to be called.

A context aware algorithm for predicting
outgoing calls
Based on these findings, we proposed a scalable
algorithm [4] for predicting the most probable contacts
to be called at any time. Using only two context
dimensions (frequency and recency), our algorithm was
tested against a real mobile dataset [5] with very
promising results. Our algorithm considers the context
dimensions and provides a list of contacts that replaces
the traditional lists available in modern mobile phones
(alphabetic list of contacts, list of most frequently used
contacts, list of most recently used contacts). The
algorithm in [4] works as follows: whenever the user
wants to retrieve a contact in order to start a new
communication session, a recent portion (called training
window – e.g. 15 days long) of the call log (both
ingoing and outgoing calls) is analyzed. A score F(c) is
assigned to each contact according to the
communication frequency with it within the training

window. Moreover, a score R(c) within a recency
window (e.g. last 6 hours) is also assigned to each
contact representing how recent was the last
communication with this contact. Finally, the total score
for each contact is computed as T(c) = wf*F(c) +
wr*R(c), where wf and wr are the weights of each
dimension (e.g. wf=0.5 and wr=0.5 for equal weights).
This score is used to sort all contacts in descending
order and select the top n to create the proposed
contact list.

The Calchas application
We developed a Google Android application, called
Calchas (\kal'-huhs\ – a seer in Greek mythology who
predicted the fall of Troy), in order to perform some
preliminary lab experiments of our algorithm with real
users, instead of simulated runs.

User interface
The interface of the application is simple and adopts a
visual style familiar to smart phone users and especially
Google Android users. The main screen is
predominantly occupied by a suggestion list of the
contacts (or numbers) that are deemed more likely to
be called (Figure 1). For each contact the application
shows the contact’s name (if present in the user’s
contact list) and the contact’s phone number. If a
contact has more than one phone numbers saved (e.g.
home, mobile, work etc) the application presents the
contact’s last used number. Also, the application
presents the date and time of the last communication
with the proposed contact. Furthermore, for each
suggestion, an Android quick contact badge is
available. The quick contact badge is an Android
system widget that launches a toolbar with several
different actions, such as presenting all the phone

numbers of the contact, making a call, writing a new
SMS, emailing the contact if an email address is
available etc. Finally, if the suggestion is a number that
is not assigned to a contact, by clicking the quick
contact badge the user can save this number as a new
contact or update an existing contact with it. A further
section in the main interface assists the user in the
case that the desired contact is not in the suggestion
list. In this instance, the user is given two options via
an icon that launches the native contacts application
and a further icon to access the device’s call log.

The application is configurable through a settings menu
(Figure 2). Therein, the user can choose the number of
suggestions that will appear in the main screen (5, 6, 7
or 8 suggestions) and enable an option for contact
photos to replace the default quick contact badge
widget icon (if available). Finally, the user can set the
frequency window (in days), the recency window (in
hours) and the weights for the recency and frequency
dimensions. These are adjusted manually for
experimentation, though we are aiming for an
automated adaptation of these parameters based on
profiling the user by monitoring their behaviour.

Application architecture
The Calchas application consists of three modules. The
first is the UI module responsible for creating the
interface described in the previous section. The UI of
the application is refreshed with a new prediction set
which is calculated when the application enters the
Running state of the Android activity lifecycle. This
assures that the user is provided with up to date
proposals, every time that the application’s main screen
becomes active. The second module is the coded
implementation of our algorithm, as described in the

previous sections. The third module is the usage
statistics module. We save anonymous statistics in an
SQLite database in the user’s device and we also
provide the option for sending those statistics to a
remote server via HTTP protocol. For these logging
purposes, we consider each refresh of the application’s
user interface as a new usage session. For each session
we record the time started (as a UNIX timestamp) and
the events that occurred. We define the following
events: a) The user selected one of the suggestions b)
the user launched the contact list c) the user launched
the call log. When an event has occurred or the user
just closed the application (e.g. she wanted just to see
the proposals) we consider that the session is over and
we record the end time. Moreover, for the event (a) we
record the full list of suggestions (contact id or the
hashed number if the suggestion is not a contact), the
actual order of the suggestions, the chosen suggestion
and the frequency and recency scores of the chosen
suggestion.

Description of the experiment
The purpose of our experiment was to obtain
preliminary results on the effect of Calchas application
on the retrieval process (speed, path) of a contact to be
called. For this purpose we designed and conducted a
lab experiment that involved several retrieval tasks
representing different retrieval scenarios.

In [6] a retrieval experiment was designed using the
participants own contact lists and call logs. However, in
this case we wanted to set all participants on the same
baseline and to exclude any potential learning or
memory effects that might influence their performance.
For this reason and because we only had a few
participants, all experiments sessions were carried out

Figure 1. Calchas main
screen

Figure 2. Calchas settings
screen

on the same device (Samsung Galaxy S2, Android 4)
using the same call log and contact list. The call log and
contact list were taken from an actual participant in a
previous experiment [3] who was close to the average
characteristics of user behavior (size of contact list,
density of communications) [3]. Specifically, this call
log had 500 entries (Android’s maximum call log size)
representing over 55 days. The contact list had 172
contacts and we replaced every name with a unique
randomly generated English name and surname.

The main task for each participant was to find and call
a contact using three different applications: the build in
contact list, the call log and finally with Calchas. The
user’s settings in Calchas were 7 suggestions, 10 days
for the frequency window and 6 hours for the recency
window. Also, wf and wr were equally weighted at 0.5.
Each participant had to retrieve six contacts, each one
with all three means. The first two contacts were a
worst-case for Calchas (not presented in the suggestion
list), the next two were an average case (presented but
low in the suggestion list) and the final two a best case
(presented and high in the suggestion list). All
participants used the applications with the same order
as we wanted to see how previous experience in the
retrieval process affected the retrieval path within
Calchas.

We gathered 20 participants (9 female) from 18 to 45
years old (m=30.1, stdev=7.5) with different
educational backgrounds, 12 of them Android users.
We asked each participant to perform the six retrieval
tasks by presenting a card with the contact name to be
found one at a time. We measured the time from the
launch of each application until the participant initiated
a call to that contact. We should mention that Calchas

averages less than 0.3 seconds to perform the
predictions and launch on the device used. We also set
the device to flight mode so that call log should not be
affected during the experiments. Finally, before the
start of the experiment with each participant we made
a short demonstration of the Calchas’s functionality and
set the device’s time and date to a preset value.

Results
An ANOVA of results (Figure 3) shows that the retrieval
times are not statistically significantly different in the
average and best case scenarios for Calchas (p=0.044).
This means that the presentation order for suggestions
does not seem to play an important role. In our
application we present the suggestions ordered by
prediction score, but an interface could equally well
present suggestions in alphabetical order. This verifies
that alphabetically ordered interfaces such as the one
presented in [6] may be optimal as they can be mixed
within existing interfaces familiar to users. We also note
that in the worst-case scenarios, the application poses
a penalty on the retrieval process as the users first
examine the list of suggestions only to find that the
desired contact is not provided, however, this penalty
averages approximately 2-3 seconds, which we do not
consider to be prohibitive.

In the worst-case scenarios, the user has to choose
between proceeding with the call log or the contact list.
In this case there are two distinct situations. For
contact “Elizabeth”, 7 users chose the call log as a
second step and 13 chose the contact list. Those users
had a better performance using the call log in the
preceding retrieval tasks, while those who chose the
contact list, took on average the same time on both
preceding tasks. Hence we note that in their case, the

choice was to “play it safe” and go for the contact list,
where finding the contact is a guaranteed result. For
contact “Isabella”, users are precisely split for the
second step. Those that chose to use the call log,
surprisingly did better with the contact list in the
preceding tasks. While this finding was unexpected, we
noted that two of these users had an exceedingly long
retrieval time using the call log, which improved
dramatically when they used the call log again as a
second step. Taking these two users out of the picture,
the results fall back to expected behaviors as the
remaining 8 users fared better with the call log than the
contact list in preceding tasks. Moving on to the 10
users that chose the contact list as a second step, we
note that for them the average time using the call log

was significantly longer than using the contact list,
hence their choice is justified.

It appears that the users’ previous experience of using
each tool plays a role in deciding which retrieval path to
follow when Calchas does not show the desired contact
in the suggestion list. By extension, it can be assumed
that the users’ predicted experience, i.e. how likely
they believe it will be to find a contact using one or the
other tool, plays a role in selecting a second step. Here,
there is a trade-off between using the contact list and
the call log. Using the contact list always takes about
the same time (unless of course the desired contact is
on the first displayed screen) but retrieval success is
more or less guaranteed. The call log is advantageous

Figure 3. Tasks for the worst (W), average (M) and best (B) case scenarios

as interaction consists solely of scrolling, instead of
typing or hitting index targets, where according to Fitt’s
law the required interaction time is longer. Further, the
call log is advantageous if the desired contact has been
communicated with recently or if it is a frequently used
contact (hence more chances to spot it while scrolling),
though in both these cases, Calchas could have picked
up the contact with a variation in the algorithm settings
(longer frequency and recency windows). In [4], we
found that even for very “social” users who make many
calls to many contacts and are hard to predict for, our
algorithm yields an 82% hit rate compared to 55% (call
log) and 75% (frequently called list). However, for
those “miss” cases where a user makes a bad choice in
selecting a second step tool due to inability to
accurately judge which tool might be best (e.g. elderly
people with limited memory abilities or very social
people who communicate with many contacts), the
interaction penalty can be quite significant. We see two
potential improvements that can help channel user
behaviour towards minimizing this penalty: First,
Calchas only displays a single screen-ful of suggestions.
Further suggestions could be loaded by expanding the
frequeny and recency windows on demand (e.g.
pressing a “load more” button). A second option would
be to dynamically adapt the call log that is used as a
second step, by showing a version where the
suggestions presented in Calchas would be removed,
hence leaving a significantly shorter list that contains
only the more “rare” contacts. Finally by shortening the
contact list to exclude Calchas’ suggestions and all
entries in the shortened call log, we could provide a
third, and final step for retrieval. A longitudinal field
study with more participants, this time using their own
data, would help us test some of these concepts and
solidify our understanding.

References
[1] Komninos, A., Plessas, A., Stefanis, V. and
Garofalakis, J. Application of dimensionality reduction
techniques for mobile social context. In Proc. of
Ubicomp 2011, ACM Press (2011), 583-584.

[2] Komninos, A. and Liarokapis, D. The use of mobile
contact list applications and a context-oriented
framework to support their design. In Proc. of
MobileHCI ’09, ACM Press (2009).

[3] Stefanis, V., Plessas, A., Komninos, A. and
Garofalakis, J. Patterns of usage and context in
interaction with communication support applications in
mobile devices. In Proc. of MobileHCI ’12, ACM Press
(2012), 25-34.

[4] Plessas, A., Stefanis, V., Komninos, A. and
Garofalakis, J. Using communication frequency and
recency context to facilitate mobile contact list
retrieval. International Journal of Handheld Computing
Research (IJHCR) (to appear).

[5] Laurila, J.K., Gatica-Perez, D., Aad, I., Jan Blom,
T.-M.-T. D., Bornet, O., Dousse, O., Eberle, J. and
Miettinen, M. The mobile data challenge: Big data for
mobile computing research. In Mobile Data Challenge
by NOKIA Workshop, in conjunction with Int. Conf. on
Pervasive Computing, 2012.

[6] Bergman, O., Komninos, A., Liarokapis, D., &
Clarke, J. You never call: Demoting unused contacts on
mobile phones using DMTR. Personal and Ubiquitous
Computing, 16(6), 757-766, Springer (2012).

