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Figure 1: Example of synthetic participants output during transcription tasks with various keyboard layouts.

ABSTRACT
Mobile text entry research is contingent on user-based evaluations,
which are frequently carried out in small-scale lab experiments.
Recruitment and execution of experiments are costly in terms of
time and effort required. Further, the results are hard to generalise,
because of the small number of participants in the experiments.
Studies are sometimes replicable, but not reproducible. RoboType
is a realistic open-source simulator for mobile text entry, written
in Python and based on the consolidation of state-of-the-art un-
derstanding of human behaviour during entry tasks. It aims to
aid researchers to produce fast and accurate evaluations of mo-
bile text entry ideas with fully reproducible results. It can be used
to significantly reduce time required to explore the design space
of new prototypes on various user bases, or as a benchmark to
compare results with other researchers. This paper presents an
early implementation of RoboType and demonstrate its promising
potential.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Text input; Touch screens;Ubiqui-
tous and mobile computing design and evaluation methods.
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1 INTRODUCTION
Fast and accurate mobile text entry is critical for the usability of
all services running on modern smartphones, tablets and smart
watches. Novel ideas and prototypes can be designed either through
inspiration or through participatory design methods, while com-
putational design has been gaining ground as a prototype develop-
ment method in recent years (e.g. [8, 12]). To evaluate prototypes,
researchers typically employ lab-based methods centered around
the transcription task, where participants have to copy phrases
presented to them by the researchers, as fast and as accurately as
possible. Transcription tasks are thus considered the de-facto evalu-
ation method for mobile text entry [21]. Less frequently, prototypes
are evaluated in field studies (e.g. [13, 22, 26]). In the field of Mobile
Human-Computer Interaction, for both lab and field studies, par-
ticipant recruitment and the actual execution of the evaluation is
time-consuming and requires significant effort by the researchers
[6]. This fact limits the number of participants in most mobile text
entry experiments to an average of approximately 15 [14], with
very few notable exceptions (e.g. [18]). Although in many cases
researchers manage to find statistically significant differences with
such low numbers of participants, the generalisability of results is
debatable. Often, participants are recruited through convenience
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sampling, and address a very specific part of the population (typ-
ically, students in engineering faculties), as do many HCI studies
[5, 23]. To examine how prototypes might work with other popu-
lations, researchers must recruit more participants and carry out
more experiments.

Theoretical performance modelling is a type of evaluation that
attempts to overcome the challenge of recruiting large participant
numbers. Using models driven by theory or derived from empirical
data, researchers can estimate the upper and lower bounds of text
entry performance against baselines (e.g. theoretical performance
of a new keyboard layout vs. that of QWERTY), as, for example,
in [2, 3, 15, 27]. However, these models include many assumptions
which do not apply in real life, such as "the user always taps the
desired key", or "the user needs no time to search for the next key
to type". In many cases, these preliminary evaluations are followed
up with user studies, to verify the modelling results.

This paper proposes a different approach to evaluations that rests
between those without users (i.e. theoretical performance mod-
elling) and those with actual users (e.g. collection of empirical data),
through the use of modelled, synthetic experiment participants,
that non-deterministic outcomes during simulations. RoboType is
an open-source simulator for text entry, which allows researchers
to code new text entry systems, and evaluate them in virtual exper-
iments with an unlimited number of synthetic participants. These
synthetic participants operate on behavioural parameters which can
be derived from empirical data, or set manually by the researcher, to
simulate various archetypes of users. For example, researchers can
generate participants who suffer from tremor, have wide fingertips,
are not familiar with QWERTY, are already experts in whatever
new prototype is being evaluated, or become better by learning in
the process of multiple trials (or even tired and bored in the pro-
cess). RoboType is still under development, but I demonstrate the
flexibility of this approach by comparing the ability of RoboType
to reproduce theoretical performance bounds in alternative key-
board layouts, as found in literature, and to produce more realistic
results by introducing stochastic touch modelling. The code and
data is released as an open-source project, inviting the community
to contribute to further development. Synthetic participants are
free, endlessly configurable, require no consent, and can perform
exceptionally large experiments that would take weeks, in mere
minutes, with highly realistic results.

2 ROBOTYPE DESIGN
To simulate text entry on mobile devices, RoboType uses two pri-
mary components (classes): Keyboard and Finger. Further com-
ponents working alongside these fundamental constructs can be
added (e.g. a statistical decoder). The paper describe the princi-
ples for these in the next sections. Robotype is currently limited to
simulating index finger entry only.

2.1 Keyboard
The Keyboard object is constructed by reading an XML file that
describes the keyboard layout. The XML specification is a simplified
version of the Android XML keyboard layout specification. It allows
the specification of standard or specific key sizes and inter-key gaps
as a percentage of the keyboard’s dimensions. Key labels can be

either specified as text, or can be inferred from icon resource names
if a label is not present. Upon construction, the Keyboard object
reads the XML source and maintains a dictionary of all present
keys, with their coordinate center, coordinate bounding box, key
length and height and, of course, label. Further, an R-Tree index of
the key bounding boxes is constructed and maintained in memory.
This index is used in another function of the Keyboard object, to
quickly turn touch coordinates into input stream output (i.e. to
identify which "key" the virtual "finger" has pressed). The R-Tree
index is also used to find the nearest suitable target from the user’s
finger current position, if the desired key is repeated in multiple
locations on the keyboard (e.g., left and right shift keys), so that
optimal selection when multiple alternatives are available to the
user can be modelled. Finally, the Keyboard object contains a helper
function to plot the present keys and thus assist the visualisation
of the in-memory layout.

2.2 Finger
The Finger object is responsible for "moving" around a Keyboard
object and selecting targets from it. The main use of this object
is through a function that takes an input string as a parameter,
and attempts to move the finger from target to target on the Key-
board in order to type the input string. To do so, it can be assumed
that the Finger should move from its current position to the next
key center, however, the actual landing coordinates are calculated
stochastically, based on FFits’ Law, namely a dual gaussian distribu-
tion which includes the inherent imprecision of the motor system
without a desired horizontal displacement component, and the im-
precision caused by the horizontal velocity at which the finger
moves towards the next target [4]. Finally, it is known that fingers
slide while tapping targets, after the finger has touched down on
the screen. These slides are modelled as movements in the direction
of the original finger trajectory [17].

2.2.1 Finger landing coordinates. According to FFits Law, the dis-
persion of touch down coordinates from an intended target follows
a dual gaussian distribution. Its first component is the inherent
inaccuracy of the motor system - for example, tapping the same
target multiple times will result in a normally distributed dispersion
of touch down coordinates around the intended target center. In
RoboType, this is modelled using zero as a mean, and a fraction of
each key’s width and height as the standard deviation in a gaussian
distribution, to provide a random set of coordinates away from the
intended target center. The second component is inaccuracy due
to movement speed. However, there is no bibliography exploring
how user fingers’ velocities change in different trajectories across
a keyboard.

Based on [20], one can posit that users may achieve a faster
average finger velocity across larger distances, since the lognormal
distribution of velocity profiles allows for a greater top speed on
longer distances. Jiang et al.’s dataset [10] was used to explore
user velocity profiles, as it is the only openly available dataset that
contains both finger tracking and touch data for mobile text entry.
Visual inspection of plotted velocity-distance data, showed that
maximum horizontal speed correlates linearly with distance, but
average speeds calculated from both hand-tracking and touch event
data appeared to follow a logarithmic function. To verify, a function
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of the general formU(d ) = α × ln(β +d)+γ was fitted to the data of
each individual participant, resulting in an average goodness of fit
R2 = 0.655 (σ = 0.125,min = 0.056,max = 0.770) (Fig.2a). Hence,
in the previous equation,U(d ) provides the average finger velocity
to travel a distance d between two keys for a given participant.

The relatively low R2 values are obviously owed to the disper-
sion of actual data points across the function line, however, the
fitted function can be used as a base, from which to build realistic
synthetic average velocity estimation data. To do so, for each par-
ticipant, their trajectory data was grouped into 16 bins based on the
distance between consecutively typed keys (Fig.2b). For each bin,
the standard deviation of average finger velocities from the touch
data was calculated. Then, to generate synthetic finger velocity data
for any given participant and for any distance travelled, the fitted
logarithmic function parameters for that participant was used to
derive the mean velocity value for that distance. By adding gaussian
noise to this value, using the respective binned distance velocity
standard deviation, realistic samples of average data can be gen-
erated in a stochastic manner. The results capture real behaviour
quite well, as can be seen in Fig. 3.

Therefore, finger kinematics for a particular participant in [10]
can be modelled accurately using a set of parameters for the loga-
rithmic value, and the binned velocity standard deviations as de-
scribed previously. By extension, one can propose that entirely
synthetic participants can be modelled by tuning the average speed
function parameters using α = 0.98020925, β = 136.88089169,γ =
−4.83177533 as a starting point (these are the fit parameters using
all participant data, see Fig.2a). Velocity standard deviation S(d ) for
travelling a distance d , can also be modelled using the 4th order
polynomial S(d ) = 5× 10−13 ×d4 − 6× 10−10 ×d3 − 8× 10−7 ×d2 +
0.0014 × d − 0.0213, fitted across all participants’ data, and adding
gaussian noise to S(d ) (Fig.2b).

Finally, the simulator is afforded the ability to adjust the calcu-
lated finger movement velocity by a set scaling factor, to simulate
users typing more slowly or faster than normal. While implemented
and demonstrated in Section 2.2.7, this function is not used in the
evaluation.

2.2.2 Finger sliding. To model the slide magnitude, the dataset in
[7] was used. This, to my knowledge, is one of the few, if not the
only mobile text entry dataset that contains touch down and touch
up events for each keystroke. Examining the dataset, it was not
possible to find any relationship between movement distance or
movemement speed against slide magnitude. On the other hand, it
was noted that slides in most keys display a χ2 distribution, though
some keys had very few data points (Fig.4). Therefore the slide
magnitude was modelled as a random value picked from such a
distribution, with the respective key’s average slide magnitude used
as the degree of freedom parameter. Finally, both landing and slide
coordinates were limited to the left, bottom and right bounds of the
keyboard, as they correspond to the screen edges where the finger
has no effect. The upper touches were not limited, since they might
fall on areas that are outside the keyboard, but are still sensitive to
touch.

2.2.3 Keystroke timings. The previous modelling allows the cal-
culation of timings for each keystroke, by dividing the distance
between starting and landing coordinates by the calculated average

(a) Fitted U(d ) parameters for each individual participant in
[10] and across all data (black dotted line).

(b) Velocity standard deviations per distance bin, across all
participants in [10], and fitted S(d ) polynomial.

Figure 2: Velocity/distance profile models

Figure 3: Example synthetic finger velocity data (2k data
points) vs actual data for a small subset of participants (ids
101-108), demonstrating the realistic output of the speed es-
timation technique.

Figure 4: Example of slide length distribution for a small
subset of keys (blue). The red histogram shows a histogram
of 100k random samples from a χ2 distribution.
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speed to travel that distance. To model participant familiarity with
the keyboard layout, a Visual Search Time (VST) component was
included. This is calculated from a gaussian distribution, using a
pre-determined base value expressed in milliseconds as a mean, and
a scaling factor (e.g. 0.10) of this base value as a standard deviation.
This allows the generation of synthetic participants with varying
levels of familiarity with the keyboard. For example, a complete
novice will require a mean of 1.2sec (σ = 1.2 × 0.1 = 0.12sec) VST,
which will be added to the movement time.

2.2.4 Keystroke errors. Based on the previous modelling, a syn-
thetic participant may hit an unintended target, an area of the
keyboard that does not correspond to a key, or a non-functional
key. In the current level of development, modifier keys (e.g. shift,
numeric mode, punctuation) are considered inactive areas of the
keyboard. Therefore a mechanism was implemented, whereby a
simulated touch that does not result in the desired keystroke is
repeated, until it is successful. If the user inadvertently presses a
backspace, the mechanism also ensures that the the synthetic user
attempts to replace the deleted letter first, before proceeding to the
desired target input. This mechanism assumes that the user has
full and immediate awareness of the effect of their actions, which
is not entirely realistic as users typically commit to a few charac-
ters before checking for errors [13]. Better simulation of the visual
attention component is left for a further stage of development.

2.2.5 Replicability. In all previous sections, where random sam-
pling is used, this can be done using a pre-determined seed for the
random generator. In this way, RoboType can ensure the complete
replicability of any results.

2.2.6 Input stream generation. At the end of any simulation run,
RoboType produces the complete input stream for each synthetic
participant, together with related metadata, therefore facilitating
post-processing to derive text entry metrics (e.g. WPM, Error Rates
etc.). The input streams are produced as an array of Python dic-
tionary objects, which can be saved as JSON files, as per Fig. 5.
Contrary to evaluations with real users, we are able to log not just
the user’s actual input, but also their intention. In the example in
Fig. 5, the user intended to tap the letter "i", but overshot and hit the
area above the keyboard bounds (y-coords are negative), therefore
resulting in "none" as the actual input.

2.2.7 Demonstration. Fig.6 demonstrates the operation of Robo-
Type using the profile of one participant in [10] (id=114) to type
the phrase "thanks for the quick turnaround" fifty consecutive times.
In the first run, the simulated participant attempts the task at nor-
mal input speed, resulting in a typing performance at 22.44WPM
(hits:1705, misses:568, backspaces:119). In the second run, the par-
ticipant attempts the task at twice their normal speed. This time
they are faster (34.88WPM) but not actually twice as fast - this is
expected as they make many more mistakes, which need to be fixed
(hits:2224, misses:1599, backspaces:392). In this demonstration, a
hit is any keystroke that finds its intended target. A miss is any
keystroke that lands on an unintended target (other key, gap or
inactive key, or inadvertent backspace).

Figure 5: Sample input stream generated by RoboType. Each
"tap" is represented as one JSON object.

(a) Synthetic participant typing at normal speed.

(b) Synthetic participant typing at 2x normal speed.

Figure 6: Demonstration of RoboType on a QWERTY key-
board. Typing at an increased speed causes more erroneous
touches.
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3 SYNTHETIC EVALUATIONS WITH
ROBOTYPE

To further demonstrate the ability of RoboType to quickly evaluate
novel designs, a comparison between QWERTY, FITALY and OPTI-
II is perfomed, following the classic paper by Zhai et al. [27]. This
paper was selected as it models single-digit (or stylus) input like
RoboType, and in order to compare the ability of RoboType to
reproduce these theoretically bounded results, as well as to explore
the resulting differences when stochastic simulation is introduced.
In Zhai et al. [27], the theoretical performance for these alternative
layouts in terms of text entry speed, was calculated to be 28WPM
(QWERTY), 36WPM (FITALY) and 38WPM (OPTI). These metrics
assume that the user always aims for the key centers and succeeds
to tap it, and that the user always makes an optimal choice of
space key with OPTI and FITALY. The latter assumption also holds
for RoboType, but as explained, RoboType presents a stochastic
distribution of touch-down coordinates. The theoretical bounds in
[27] have been validated by similar findings in alternative modelling
approaches [9, 16].

3.1 Synthetic Participants
An entirely synthetic experiment was configured, consisting of
30 participants modelled after those in [10]. Each synthetic par-
ticipant uses the same U(d ) parameters as their real counterpart.
Under this experiment, three cases were investigated: In the first
case (IDEAL), participants are fully cognizant of the key locations,
therefore VST = 0, and participants have fully accurate fingers
so they always tap the center of the target (as per [27]). In the
second case (EXPERT ), it is assumed that VST = 0 but participant
fingers are not fully accurate (motor system inherent distribution
factor = 0.07, paired with a velocity-based distribution). This case
represents a fully expert user having memorised the location of
each key completely. Finally, the third case (REAL) presents a more
realistic version of the expert users in the previous case. Having
trained for a considerable period of time, participants have VST
and VST scaling factor that are randomly picked from gaussian
distributions with x̄ = 100ms,σ = 50ms and x̄ = 0,σ = 0.2 respec-
tively. In [11], a model for learning new keyboard layouts shows
VST to drop logarithmically from approx 1.2sec to 0.7sec after 2.5
hours of training, but although the fit appears to be good, there is
no validation on the model performance after longer training (e.g.
a few months worth of keyboard use). However, in [10], it is argued
that more experienced typists have less need to guide fingers with
their eyes, thus a low VST (in this case, 100ms) is a realistic choice.

3.2 Experiment design
In every case, each synthetic participant was given a corpus of
50 phrases picked randomly for each participant, from the Enron
Mobile Phrase Set [24]. Obviously, with synthetic participants, there
are no learning effects therefore there is no need to counterbalance
or otherwise account for human bias. The keyboard size was set to
1440 × 1000px.

3.3 Results
Table 1 and Fig.7 show the resulting WPM metrics for each partic-
ipant setting and keyboard. In the Ideal condition, the produced

QWERTY FITALY OPTI

IDEAL 30.971 (4.423) 36.168 (5.041) 36.475 (5.174)
EXPERT 30.238 (4.079) 35.354 (4.876) 35.593 (4.813)
REALISTIC 27.651 (4.777) 32.060 (6.252) 32.460 (6.418)

Theoretic
bounds
[9, 16, 27]

28.0 - 31.8 36.0 - 42.4 38.000

Table 1: AverageWPM (standard deviations in parentheses).

metrics are within the ranges predicted by simulation in other pa-
pers [9, 16, 27], bearing in mind that these were conducted with
diverse corpora. These results demonstrate that the modelling suc-
cessfully captures theory-predicted results, and the modifications
towards realism (motor system inaccuracy, visual search time) pro-
duce a better indication of performance for actual, well-trained
users. Execution times for the entire experiment (all cases) was
under 1 minute. In the next sections the paper outlines the sta-
tistical test results comparing performance with each keyboard
under each case. Statistical tests were selected after examination
of the required assumptions. The results show that the statistically
significant differences predicted by theoretical modelling are still
maintained in realistic simulations that overcome the assumptions
of these models, as has been found empirically.

3.3.1 Case 1: Ideal. AnANOVA test showed statistically significant
differences (F(2) = 11.999,p < 0.001). Pairwise t-tests with post-hoc
Bonferroni correction (p threshold at 0.017) showed the differences
to be statistically significant between QWERTY and FITALY (t =
−17.744,p < 0.001), QWERTY and OPTI (t = −19.123,p < 0.001)
but not between OPTI and FITALY (t = −2.365,p = 0.025).

3.3.2 Case 2: Expert. An ANOVA test showed statistically sig-
nificant differences (F(2) = 12.955,p < 0.001). Pairwise t-tests
with post-hoc Bonferroni correction (p threshold at 0.017) showed
the differences to be statistically significant between QWERTY
and FITALY (t = −16.409,p < 0.001), QWERTY and OPTI (t =
−15.872,p < 0.001) but not betweenOPTI and FITALY (t = −0.941,p =
0.355).

3.3.3 Case 1: Realistic. An ANOVA test showed statistically signifi-
cant differences (F(2) = 6.218,p = 0.003). Pairwise t-tests with post-
hoc Bonferroni correction (p threshold at 0.017) showed the differ-
ences to be statistically significant between QWERTY and FITALY
(t = −11.635,p < 0.01), QWERTY and OPTI (t = −12.000,p < 0.01)
and OPTI and FITALY (t = −3.158,p = 0.004).

4 DISCUSSION
This paper presented RoboType, a simulator for mobile text entry re-
search. Although development is still in progress, this late-breaking
work demonstrates the potential of the simulator in realistically
evaluating novel interaction methods for text entry, without the
need for physical participants. Looking ahead, there are numerous
components to the simulator which I am currently working on and
(or) would like to see implemented.
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(a) Synthetic participants typing at ideal conditions.

(b) Synthetic participants typing with V ST = 0 and normal motor
system inaccuracies.

(c) Synthetic participants typing at realistic conditions (V ST , 0,
normal motor system inaccuracies)

Figure 7: Results from a synthetic experiment with Robo-
Type

In terms of finger kinematics, work is being made towards imple-
menting findings from [1] that demonstrate that touch distributions
are offset from key centers. This is likely due to handedness and
posture during use, but it is difficult to validate this assumption
without collecting and analysing new empirical data. Further, as

RoboType currently only supports index-finger text entry, it should
be extended to support thumb entry and two-thumb entry, further
incorporating physical dimension aspects (e.g. device size, thumb
length, thumb reach).

In terms of the keyboard itself, a statistical decoder to the default
keyboard has been implemented based on [25] but is not presented
in this paper. Next letter and next-word predictions based on neural
networks and deep learning methods are also being worked on. Fur-
ther work will implement support for text entry aids in the default
keyboard of the simulator, including z-ordering of keys to allow
for magnification of key bounding boxes according to statistical
probability, a word suggestion bar and full support for numeric
and symbol mode switching. While RoboType focused on 26 letter
keyboards in this study, it can be easily extended through code to
support other input techniques (e.g. 12-key multitap and predictive,
swiping, multi-page layouts, long-presses, multiple languages etc.).
All can be coded with relative ease, by extending the base finger
and keyboard mechanics already supplied in the current stage of
development.

Finally, one critical area still to be developed is a distinct compo-
nent for the participants’ visual system. This will help simulate not
just visual search times in a more realistic way, but also to model
user attention switching between the keyboard and text entry area,
delayed observation of errors in the input stream (and their cor-
rection), as well as attention to visual on-screen artifacts related
to text entry (e.g. suggestion bar, error highlighting etc.). The vi-
sual system model should be combined with further modelling to
simulate accumulated participant experience as per [11], which
will affect both finger kinematics and visual attention as synthetic
participants gain exposure to new tasks and input methods.

I hope that in the future, RoboType can be used to generate
huge synthetic text entry datasets, using instances of RoboType
as remote collaborative agents that communicate with each other,
for example through conversational interaction powered entirely
by large language models such as ChatGPT, an appoach that has
been recently proven feasible [19]. Such datasets could open up
new pathways for text entry research, which are currently only
available to industry-based researchers with access to data from
commercially deployed keyboards (e.g. GBoard).

From an ethical perspective, RoboType presents a solution that
may remove obstacles due to privacy (e.g. creating large datasets
from in-the-wild studies). Additionally, further modelling of the
sensorimotor and cognitive system may open up new options for
research to benefit persons belonging to special categories, such
as children, persons with visual, motor or cognitive impairments
who are harder to recruit and require careful handling of informed
consent.

In this paper, I have presented RoboType as an open-source
tool for the mobile text entry community, which can be freely
downloaded from GitHub at https://github.com/komis1/RoboType.
I invite the community to make use of this tool and to contribute
towards its further development. This release also includes all model
parameters based on the work of [10], as used in the evaluation
presented here.

https://github.com/komis1/RoboType


RoboType: Realistic Mobile Text Entry Evaluations with Synthetic Users MobileHCI ’23 Companion, September 26–29, 2023, Athens, Greece

REFERENCES
[1] Shiri Azenkot and Shumin Zhai. 2012. Touch Behavior with Different Postures on

Soft Smartphone Keyboards. In Proceedings of the 14th International Conference
on Human-computer Interaction with Mobile Devices and Services (MobileHCI ’12).
Association for Computing Machinery, New York, NY, USA, 251–260. https:
//doi.org/10.1145/2371574.2371612

[2] Nikola Banovic, Varun Rao, Abinaya Saravanan, Anind K. Dey, and Jennifer
Mankoff. 2017. Quantifying Aversion to Costly Typing Errors in Expert Mobile
Text Entry. In Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 4229–4241. https://doi.org/10.1145/3025453.3025695

[3] Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K. Dey, and Jennifer
Mankoff. 2019. The Limits of Expert Text Entry Speed on Mobile Keyboards
with Autocorrect. In Proceedings of the 21st International Conference on Human-
Computer Interaction withMobile Devices and Services (MobileHCI ’19). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3338286.3340126

[4] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts Law: Modeling Finger Touch
with Fitts’ Law. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13). Association for Computing Machinery, New York,
NY, USA, 1363–1372. https://doi.org/10.1145/2470654.2466180

[5] Kelly Caine. 2016. Local Standards for Sample Size at CHI. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16).
Association for Computing Machinery, New York, NY, USA, 981–992. https:
//doi.org/10.1145/2858036.2858498

[6] Karen Church, Denzil Ferreira, Nikola Banovic, and Kent Lyons. 2015. Under-
standing the Challenges of Mobile Phone Usage Data. In Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’15). Association for Computing Machinery, New York, NY,
USA, 504–514. https://doi.org/10.1145/2785830.2785891

[7] Mark Dunlop, Andreas Komninos, and Emma Nicol. 2016. "OATS_201411 High-
lighting Keyboard Study 2" Dataset. https://doi.org/10.15129/5fce2dfd-4a12-
4637-8eaa-641f0eb319be

[8] Anna Maria Feit, Mathieu Nancel, Maximilian John, Andreas Karrenbauer, Daryl
Weir, and Antti Oulasvirta. 2021. AZERTY Amélioré: Computational Design on a
National Scale. Commun. ACM 64, 2 (Jan. 2021), 48–58. https://doi.org/10.1145/
3382035

[9] Ana Beatriz Herthel and Anand Subramanian. 2020. Optimizing Single-Finger
Keyboard Layouts on Smartphones. Computers & Operations Research 120 (Aug.
2020), 104947. https://doi.org/10.1016/j.cor.2020.104947

[10] Xinhui Jiang, Yang Li, Jussi P.P. Jokinen, Viet Ba Hirvola, Antti Oulasvirta, and
Xiangshi Ren. 2020. How We Type: Eye and Finger Movement Strategies in
Mobile Typing. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–14. https://doi.org/10.1145/3313831.3376711

[11] Jussi P. P. Jokinen, Sayan Sarcar, Antti Oulasvirta, Chaklam Silpasuwanchai,
Zhenxin Wang, and Xiangshi Ren. 2017. Modelling Learning of New Keyboard
Layouts. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). Association for Computing Machinery, New York, NY, USA,
4203–4215. https://doi.org/10.1145/3025453.3025580

[12] Andreas Komninos and Mark Dunlop. 2014. Text Input on a Smart Watch. IEEE
Pervasive Computing 13, 4 (Oct. 2014), 50–58. https://doi.org/10.1109/MPRV.2014.
77

[13] Andreas Komninos, Mark Dunlop, Kyriakos Katsaris, and John Garofalakis. 2018.
A Glimpse of Mobile Text Entry Errors and Corrective Behaviour in the Wild.
In Proceedings of the 20th International Conference on Human-Computer Interac-
tion with Mobile Devices and Services Adjunct (MobileHCI ’18). Association for
Computing Machinery, New York, NY, USA, 221–228. https://doi.org/10.1145/
3236112.3236143

[14] Andreas Komninos, Vassilios Stefanis, and John Garofalakis. 2023. A Review
of Design and Evaluation Practices in Mobile Text Entry for Visually Impaired
and Blind Persons. Multimodal Technologies and Interaction 7, 2 (Feb. 2023), 22.
https://doi.org/10.3390/mti7020022

[15] Per Ola Kristensson and Thomas Müllners. 2021. Design and Analysis of Intelli-
gent Text Entry Systems with Function Structure Models and Envelope Analysis.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Sys-
tems (CHI ’21). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3411764.3445566

[16] Yanzhi Li, Lijuan Chen, and Ravindra S. Goonetilleke. 2006. A Heuristic-Based
Approach to Optimize Keyboard Design for Single-Finger Keying Applications.
International Journal of Industrial Ergonomics 36, 8 (Aug. 2006), 695–704. https:
//doi.org/10.1016/j.ergon.2006.04.009

[17] Yan Ma, Shumin Zhai, IV Ramakrishnan, and Xiaojun Bi. 2021. Modeling Touch
Point Distribution with Rotational Dual Gaussian Model. In The 34th Annual ACM
Symposium on User Interface Software and Technology (UIST ’21). Association for
Computing Machinery, New York, NY, USA, 1197–1209. https://doi.org/10.1145/
3472749.3474816

[18] Kseniia Palin, Anna Maria Feit, Sunjun Kim, Per Ola Kristensson, and Antti
Oulasvirta. 2019. How Do People Type on Mobile Devices? Observations from a
Study with 37,000 Volunteers. In Proceedings of the 21st International Conference
on Human-Computer Interaction with Mobile Devices and Services (MobileHCI
’19). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3338286.3340120

[19] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris,
Percy Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive
Simulacra of Human Behavior. https://doi.org/10.48550/arXiv.2304.03442
arXiv:2304.03442 [cs]

[20] Réjean Plamondon, Christian O’Reilly, Céline Rémi, and Thérésa Duval. 2013.
The Lognormal Handwriter: Learning, Performing, and Declining. Frontiers in
Psychology 4 (2013). https://www.frontiersin.org/articles/10.3389/fpsyg.2013.
00945

[21] Shyam Reyal, Shumin Zhai, and Per Ola Kristensson. 2015. Performance and
User Experience of Touchscreen and Gesture Keyboards in a Lab Setting and in
the Wild. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). Association for Computing Machinery, New York,
NY, USA, 679–688. https://doi.org/10.1145/2702123.2702597

[22] André Rodrigues, Hugo Nicolau, André Santos, Diogo Branco, Jay Rainey, David
Verweij, Jan David Smeddinck, Kyle Montague, and Tiago Guerreiro. 2022. In-
vestigating the Tradeoffs of Everyday Text-Entry Collection Methods. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3491102.3501908

[23] Anam Sohail. 2020. Challenges in Recruiting Participants for Studies in HCI.
Master’s thesis. RWTH Aachen University, Aachen.

[24] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text
Entry Evaluations Based on Genuine Mobile Emails. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile Devices and
Services (MobileHCI ’11). Association for Computing Machinery, New York, NY,
USA, 295–298. https://doi.org/10.1145/2037373.2037418

[25] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola
Kristensson. 2015. VelociTap: Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard Input. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’15). Association for Computing Machinery, New York, NY, USA, 659–668.
https://doi.org/10.1145/2702123.2702135

[26] Christoph Wimmer, Richard Schlögl, Karin Kappel, and Thomas Grechenig. 2019.
Measuring Mobile Text Entry Performance and Behaviour in the Wild with a
Serious Game. In Proceedings of the 18th International Conference on Mobile and
Ubiquitous Multimedia (MUM ’19). Association for Computing Machinery, New
York, NY, USA, 1–11. https://doi.org/10.1145/3365610.3365633

[27] Shumin Zhai, Michael Hunter, and Barton A. Smith. 2002. Performance Opti-
mization of Virtual Keyboards. Human–Computer Interaction 17, 2-3 (Sept. 2002),
229–269. https://doi.org/10.1080/07370024.2002.9667315

https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/3025453.3025695
https://doi.org/10.1145/3338286.3340126
https://doi.org/10.1145/3338286.3340126
https://doi.org/10.1145/2470654.2466180
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1145/2785830.2785891
https://doi.org/10.15129/5fce2dfd-4a12-4637-8eaa-641f0eb319be
https://doi.org/10.15129/5fce2dfd-4a12-4637-8eaa-641f0eb319be
https://doi.org/10.1145/3382035
https://doi.org/10.1145/3382035
https://doi.org/10.1016/j.cor.2020.104947
https://doi.org/10.1145/3313831.3376711
https://doi.org/10.1145/3025453.3025580
https://doi.org/10.1109/MPRV.2014.77
https://doi.org/10.1109/MPRV.2014.77
https://doi.org/10.1145/3236112.3236143
https://doi.org/10.1145/3236112.3236143
https://doi.org/10.3390/mti7020022
https://doi.org/10.1145/3411764.3445566
https://doi.org/10.1016/j.ergon.2006.04.009
https://doi.org/10.1016/j.ergon.2006.04.009
https://doi.org/10.1145/3472749.3474816
https://doi.org/10.1145/3472749.3474816
https://doi.org/10.1145/3338286.3340120
https://doi.org/10.1145/3338286.3340120
https://doi.org/10.48550/arXiv.2304.03442
https://arxiv.org/abs/2304.03442
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00945
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00945
https://doi.org/10.1145/2702123.2702597
https://doi.org/10.1145/3491102.3501908
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/3365610.3365633
https://doi.org/10.1080/07370024.2002.9667315

	Abstract
	1 Introduction
	2 RoboType Design
	2.1 Keyboard
	2.2 Finger

	3 Synthetic Evaluations with RoboType
	3.1 Synthetic Participants
	3.2 Experiment design
	3.3 Results

	4 Discussion
	References

