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Abstract. Edge computing requires the addressing of several challenges in terms 
of privacy, complexity, bandwidth and battery life. While in the past attempts 
have been made to predict users’ responsiveness to smartphone notifications, we 
show that this is possible with a minimal number of just three features synthe-
sized from non-sensor based data. Our approach demonstrates that it is possible 
to classify user attentiveness to notifications with good accuracy, and predict re-
sponse time to any type of notification within a margin of 1 minute, without the 
need for personalized modelling. 
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1 Introduction 

Smartphone notifications are part-and-parcel of everyday interaction with our devices 
and the services we expect to receive from them. Unfortunately, despite several years 
of research, managing these notifications remains a mostly manual task, in which the 
users are unassisted by intelligence embedded in the operating system, or even appli-
cations themselves. Recent work has shown that it is possible to assist users by antici-
pating opportune moments to issue notifications (i.e. moments in which the user is 
likely to be attentive to the device, and also able to engage with the notification content 
[1]). Other work has attempted to examine the role of modality in attracting the user’s 
attention (e.g. [2]). Generally, to intelligently manage notifications, Anderson et al. [3] 
propose a four-stage system approach, starting with acquiring sensor data, processing 
sensor data, inferring context from sensor data, building interruptibility models and fi-
nally managing an incoming notification (selecting modality, or deferring it). However, 
all previous approaches assume the analysis of large volumes of data in the cloud, col-
lected by a large variety of device sensors and context data sources, placing not just a 
strain on the device battery but also doubts on the applicability of these techniques, both 
due to privacy concerns, and device constraints (e.g. network availability): Precisely 
the challenges that modern Edge Computing paradigms aim to address. 

In this field of research, the least studied aspect is the issuing of a notification under 
the selection of an appropriate modality. The choice of modality is a balancing act that 
requires awareness of the user’s context (e.g. social surroundings, time of day, likely 
activity etc.), and also the notification’s context (e.g. the event it relates to, its general 
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importance, its relative importance to the user’s current task, whether the user’s imme-
diate attention is required, the cost or impact of not attending to the event etc.). 

For any researcher that has even trivially worked in context awareness, it is easy to 
see that these types of context are difficult to acquire – even if it were indeed possible, 
it remains entirely plausible that the user might prefer a system not to have such exten-
sive and intimate knowledge about their context for privacy reasons. Thus, on one hand 
we have today’s approach, in which the user is notified immediately using any modality 
that the service developers consider appropriate to attract attention, and on the other 
hand, a shift of the locus of control towards a notification management system which 
determines the appropriate modality to use given the user’s and notification’s contexts. 
To give an example, such a system might dynamically alter pre-programmed notifica-
tion modalities to issue trivial notifications using the device LED only while the user is 
working, and allow the device to sound and vibrate only if there’s an incoming call 
from a stressed colleague working on the same project.  

From the above it is plain to see that both approaches have problems: Leaving the 
locus of control entirely up to the users causes frequent disruption and frustrations and 
also leads to missing important notifications, as the users resort to coarse handling strat-
egies such as setting the phone to silent (which affects all notifications).  On the other 
hand, shifting the locus of control towards the system can still have grave consequences 
when the system doesn’t get it right and ends up causing the user to miss important 
information. In this sense, the situation becomes akin to text entry autocorrects and the 
embarrassing moments it has caused, shared across the web – usually it works well, but 
when it doesn’t, the cost to the user can be very serious. In this context, we present here 
an analysis of real-world notifications, and discuss a model to predict the users’ en-
gagement with notifications which aims to use minimal data sources, in order to pre-
serve user privacy and minimize the resources required for predicting user responsive-
ness in AmI environments using edge computing architectures. 

2 Related Work 

Predicting interruptibility and opportune times to deliver smartphone notifications is 
the subject of several recent research efforts. Much of the research is summarized by 
the excellent recent survey in [3] so we will not repeat it here, however, we lay out the 
parameters of recent important work related to our topic in Table 1 so that our own 
contribution may be placed in context with past work.  

Our work complements existing approaches in a number of ways. In contrast with 
most previous work, our analysis comes from user’s behaviour with notifications from 
any app and the OS itself, and not from a notification issued by a single application. 
We also refrain from using privacy-sensitive features (e.g. user location or application 
type). Further, all previous approaches consider the just the device ringer mode (e.g. 
[4][5][6]), which does not actually equate to the modality with which a notification is 
delivered, as we explain next. In our work, we algorithmically determine the true actual 
modality with which the notifications were delivered. Another differentiation is that we 
employ only opportunistic data collection without sensor sampling, to minimize impact 
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on the user’s battery. Lastly, while previous work rests on classification (e.g. is the user 
reachable, or attentive to their device), we also report the results of a regression-based 
approach to quantify the reaction time to notifications. 

Table 1. Overview of recent notification behaviour prediction research 

Paper Notifica-
tion source 

Users # Notifica-
tions 

Context 
features 

Measurement Perfor-
mance 

Okoshi et 
al. [1] 

Single app 687,840 N / A 387 Response time 49.7% re-
duction 

Pielot et 
al. [4] 

Single app 337 78,930 201 Notification ac-
ceptance 

0.31 (F1 
score) 

Turner et 
al. [5] 

Single app 93 11,396 9 Notification ac-
ceptance (multi-
level) 

~80% prec. 

       
Poppinga 
et al. [7] 

Single app 314 6,581 9 Notification ac-
ceptance (binary) 

77.48% acc. 

Pielot et 
al. [6] 

Messaging 
apps 

24 6,423 17 Attentivess (bi-
nary) 

68.71% acc. 

       
Okoshi et 
al. [8] 

Single app 30 2,162 45 Response time 12% reduc-
tion 

Turner et 
al. [9] 

Single app 93 11,396 9 Notification ac-
ceptance (multi-
level) 

34-65% 
acc. 

Mehrotra 
et al. [10] 

All apps 35 70,000 14 Notification ac-
ceptance (binary) 

70-80% 
specificity 

3 Data Collection 

3.1 Understanding the Android Notification System 

All previous in-the-wild studies that we have found rely on the Android OS, which 
allows application programmers to specify desired notification modalities in their code.  
Hence a notification may be programmed to request from the device any combination 
of modality during issue, including the device LED, sound and vibration. Users can 
specify a ringer mode for their device, either manually, or, in later versions of the OS, 
via context-driven rules (e.g. set to completely silent between certain hours, or only 
allow certain applications at these hours). The ringer mode may suppress, but does not 
add beyond the programmed modality requests (thus will not add a LED illumination, 
vibration or sound to a notification which is not programmed to have one). Furthermore, 
the Android OS allows users to suppress notification modalities for individual applica-
tions. The locus of control in the way a modality is used to issue a notification is shown 
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diagrammatically in Fig. 1. The OS overrides programmed modality requests based on 
a range of possible user settings.  
  

 
Fig. 1. Locus of control over the actual modality with which a notification is issued in the Android 
OS. App developers request a combination of modalities, but the OS may not necessarily honour 
these, depending on the user’s individual settings and preferences. 

Another point is that some notifications are not dismissible until a task completes or a 
user performs some action (e.g. showing a downloading progress bar, or a low disk-
space event) and that some persist during ongoing events (e.g. a phonecall).  

To infer thus reliable conclusions on how a notification modality influenced re-
sponse time, a study should capture all types of information (what were the pro-
grammed notification modalities, user per-app preferences and what was the current 
ringer mode at the time of notification). If only the current ringer mode, or programmed 
notification modality are captured, then we cannot know with any certainty what mo-
dality was actually used to issue a notification and, consequently, estimate the effect an 
individual modality might have had on the users’ response time.  

3.2 Collected data 

To collect data for our analysis, we built a simple logging application which works 
silently as UI-less background process. Previous works have employed a range of sen-
sors to detect context (e.g. [8]). A downside of this approach is that frequent sensor 
sampling drains the users’ battery. We adopted here a more opportunistic approach, 
sampling context information only at the time when a notification was issued, without 
using any hardware sensor data (e.g. accelerometer, GPS). Another consideration in 
our approach was the number of features sampled. In [4], the researchers collected data 
for 201 features, without any justification relating to their use. We believe this indis-
criminate collection of data without at least some evidence to support their selection is 
unnecessary and of course, consists a significant privacy violation with doubtful utility 
(only a handful of features were shown to have some impact on engagement). The con-
cerns over privacy are mentioned as a challenge in [3] and thus we selected to collect 
data only for features that relate immediately to the direct perceptibility of a notifica-
tion. The application subclasses the Android “notification listener” service. The service 
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is triggered, after the user has granted the relevant one-time permission, every time a 
notification is issued by any application or the OS itself. This service is also triggered 
upon dismissal of a notification. The callback methods in the service allow access to all 
the information related to the notification. Therefore for every notification we captured 
the following features relating either to the notification itself, or the device state at the 
time of issuing the notification: 

Table 2. Captured notification and device state features 

 Feature Description Values 
Notifi-
cation  
fea-
tures 

Time posted Timestamp at issue time Unix time (seconds) 
Time removed Timestamp at dismissal time Unix time or blank 

(self-cancelling notifs.) 
Package name Package identifier of the application String literal 
Sound Use a custom sound at issue time? Sound clip URI 
Default sound Use the device defaults at issue time? True | false 
LED Use a custom LED colour and pat-

tern at issue time? 
LED on/off time pattern 

Default LED Use the device defaults at issue time? True | false 
Vibration pattern Use a custom vibration pattern at is-

sue time? 
Vibration on/off time 
pattern 

Default vibration Use the device defaults at issue time? True | false 
Notification flags A bit mask with flags related to the 

notification.  
1: should use LED 
2: ongoing notification 
4: insistent notification 
8: only-once 
16: auto-cancelling 
32: no-clear 
64: foreground 
128: high priority 
256: local only 
512: group summary 

Device 
fea-
tures 

Ringer mode The current device ringer mode 0: silent (LED only) 
1: vibration & LED 
2: sound, vibr. & LED 

Interactive Whether the device is in a current 
“interactive” state (ready to interact 
with the user) 

0: device sleeping 
1: ready to interact 

Screen state The current screen state 1: off 
2: on 
3: dozing 
4: dozing - suspended  

Allow lock-
screen notifs. 

Are notifs. allowed to be displayed 
on the lock-screen of the device? 

True | false 
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For later versions of the Android OS, the captured notification shows not the pro-
grammed modalities, but the modalities that this notification was allowed to have based 
on the user’s preferences (through the notification channel settings). Thus, this set of 
features covers the issues identified in section 3.1. The application was installed on the 
smartphones of 26 participants and was left to log data for a period of 4 weeks (28 
days), after obtaining informed consent. The participants were computer science stu-
dents, aged 18-22, recruited via social media and did not receive compensation. Of 
these participants, some dropped out of the study, others removed our service’s access 
permissions after some time and some returned only very small datasets. As a result, 
our analysis proceeded with data from 14 (6f) participants. 

4 Data Analysis 

4.1 Feature transformation and cleansing 

As stated above, to determine the actual modality with which a notification was deliv-
ered to a user, we need more than just ringer mode information only. Having collected 
both the requested delivery modalities (programmed modalities and filtering by per-
app settings) and the ringer mode, it is quite easy to derive simple rules for determining 
the actual delivery modality used. Hence, in contrast with work such as [10] where 
these are not combined, we derive the synthetic binary variables “Had LED”, “Had 
Sound” and “Had Vibration”. From these values we determine the modality combina-
tion that was used to deliver a notification (one of 8 possible combinations). Further-
more, by subtracting the dismissal time from the issuing time, we derive the feature 
“Response Time” in seconds. Finally, from the issuing time, we calculate the hour of 
day in which the notification was issued (“Hour”). 

In terms of the data, we collected 176,195 notifications from the 14 participants. The 
full dataset can be obtained freely at https://github.com/komis1/ami2018-notifications. 
For analysis, we removed those notifications which the user could not manually dismiss 
and all notifications pertinent to ongoing events (e.g. phonecalls, downloads etc). We 
noticed also that on some devices the OS was generating many notifications which it 
issued and dismissed at the same time, so any notifications that had a response time of 
zero were also filtered out. Examining the reaction time, we found that there existed 
several outliers in terms of reaction time, and since 90% of the sample had a reaction 
time <1376 seconds (~22 minutes), we pruned the set at that threshold.  

4.2 Statistical processing 

In the following description, all statistical tests are chosen based on the distribution of 
the relevant variables (normal or otherwise). After pruning, the resulting notification 
set consisted of 12,612 notifications, showing that less than 10% of the notifications 
received by a user are actually interactive notifications, i.e. events for which the user’s 
attention is required by an application or service. These had a mean response time 
µ=103.30s (σ=220.163s). The median was 16.00 seconds (compared to 6.15 minutes 
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found in [6]) and 3rd quartile was 75.00s. As can be seen, the distribution of response 
time follows a power-law curve (Fig. 2 left).  

How responsive are users to notifications throughout the day? Another interesting 
observation is the diurnal distribution of issued notifications (Fig. 2 right, shaded area), 
were we can see an increase of interruption after midday (skewness -.908, kurtosis -
.357), after which the level of interruption remains relatively constant until approxi-
mately midnight, where it starts to decrease. This pattern resembles closely the one in 
[7] although that result discusses the rate of engaging with content in a notification 
issued by a single app, where as we could not know whether our participants engaged, 
or simply dismissed the notifications issued to them. To quantify the disruptiveness of 
the interruption, we looked at the distribution of response times per hour of day (Fig. 2 
right). As expected, notifications issued deep in the night have a visibly longer mean 
response time compared to the rest of the day. A Kruskal-Wallis H test (owing to the 
non-normal distribution of response time in each hour bin) reveals that response time 
is indeed distributed differently throughout the day with statistical significance 
(χ2(23)=123.142, p<0.01). Interestingly, we observe that users seem to respond to noti-
fications with almost the same speed as the day progresses, despite the considerable 
increase in volume of received notifications. The times of 8am – 11am seem to be those 
when users are least attentive to their notifications, something that may be partly ex-
plainable by the fact that they receive fewer notifications at these time, hence do not 
anticipate having to engage with them and are not proactively attending to their phone. 

 

  
Fig. 2. Distribution of response time to notifications (left) and diurnal notification volume (right). 
The reference line is set at 103.3 seconds (overall average response time). 

How is response time affected by ringer mode and actual delivery modality? The 
next step was to examine the effect of modality on response time. We note that the 
majority of notifications (46.61%) was delivered using the “LED & Vibration (LV)” 
combination, followed by “LED & Sound & Vibration (LSV)” (35.97%) and “No mo-
dality (NM)” (12.71%) (Fig. 3 left). A Kruskal – Wallis H test confirms that the distri-
bution of response time within all the modality categories is different with statistical 
significance (χ2(7)=383.757, p<0.01). The three modality combinations accounted for 
>95% of the notifications and thus we selected them for further pairwise comparisons, 
using Mann-U tests with post-hoc Bonferroni correction, setting the statistical signifi-
cance level at p=0.017. In these tests, we find statistically significant differences across 
all comparisons, showing that NM (µ=133.13, σ=239.686) has the slowest response 
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time compared to LSV (µ=119.49, σ=240.058) (Z=-8.763, p=0.00) and LV (µ=75.26, 
σ=182.594) (Z=-16.925, p=0.00). The difference between LV and LSV is also statisti-
cally significant (Z=-9.960, p=0.00).  

The result indicates that users are more attentive to their devices when the modality 
used is LED & Vibration only, seemingly confirming the findings in [11][2] where it 
was found that when the phone was set to “vibration only” ringer mode, the response 
time to notifications was faster. Further examination of response time by ringer mode 
in our dataset, also corroborates previous results (Fig. 3 left). A Kruskal-Wallis H test 
confirms the observed differences are distributed differently with statistical signifi-
cance (χ2(2)=50.262, p<0.01). Using Mann-U tests with post-hoc Bonferroni correction, 
setting the statistical significance level at p=0.017, we can confirm when the device 
ringer mode is set to “Vibrate only" (µ=81.46, σ=189.050) the response time is faster 
than “Silent” (µ=117.25, σ=234.029, Ζ=-6.902, p<0.01) and than “Sound and Vibrate” 
(µ=110.27, σ=228.993, Ζ=-4.693, p<0.01). We also noted that “Sound and Vibrate” has 
a statistically significant lower response time than “Silent” (Z=-4.485, p<0.01). 

  

  
Fig. 3. Response time to notifications according to actual delivery modality (left) and ringer mode 
(right). The reference line is set at 103.3 seconds (overall average response time). 

Naturally, an assumption could be made here that “silent” mode has the slowest reaction 
time because it would be a type of mode typically associated with contexts where no 
disturbance is required. Such a context might be night time, when users go to sleep. On 
the other hand, we noticed in Fig. 2 (right) that users seem to be, if anything, more 
attentive to their devices at these hours. We noticed that users place their device on 
“silent” mode not just at night time, but also frequently during the day too (10am-5pm). 
In fact we also notice increased use of the “vibrate only” mode in these hours. In a sense 
that can be expected – these are normal class-going hours for students (Fig. 4 left). 
However, when we plot the diurnal distribution of the actual delivery modality of the 
notifications, a totally different picture emerges (Fig. 4 right). The discrepancy between 
user ringer mode and actual delivery of the notification is immediately obvious. 
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Fig. 4. Distribution of notifications according to ringer mode (left) and actual delivery modality 
(right). 

The next question thus becomes, can the ringer mode, or actual delivery modality be 
used to predict response time to notifications? Bivariate Spearman’s rho correlations 
between the mean response time in each hourly slot and the percentage of notifications 
delivered under each of the ringer mode settings at that time, reveal no statistically 
significant correlation (Table 3). On the other hand, a similar analysis between mean 
response time in each hourly slog and the percentage of notifications delivered with 
each of the 8 modality combinations, revealed a statistically significant negative corre-
lation with LV (Table 3). 

Table 3. Bivariate correlation coefficients and statistical significance between percentage of 
notifications under specific modality or general ringer mode and response time. 

Modality --- --V -SV LSV -S- LS- L-- L-V 
Spearman’s ρ 0.237 0.226 -0.25 0.322 0.148 0.176 0.297 -.524 

p-value 0.266 0.289 0.238 0.125 0.490 0.410 0.159 0.009 
Ringer Mode Silent Vibrate Sound & Vibrate   

Spearman’s ρ 0.254 -0.283 0.156     
p-value 0.231 0.179 0.468     

 

  
Fig. 5. Correlation plots for mean response time to notifications, and percentage of notifications 

delivered under given ringer mode (left) or with actual modality (right) 

Further analysis with linear modelling shows that using the percentage of notifications 
delivered under each ringer mode does not sufficiently explain the variability in re-
sponse time (R2=0.65). This finding is in line with [6], where it was found that ringer 
mode is a rather weak predictor of message notification attentivity. On the other hand, 
linear modelling with the percentage of notifications under their actual delivery modal-
ity, the model fit is quite good (R2=0.830), showing that the use of actual delivery mo-
dalities is a much better predictor for a population’s attentivity to issued notifications. 
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What is the role of device and screen operational state in response time? A further 
set of features related to the device state (“interactive” or not) and the screen state, as 
discussed above. To explain this further, a device is in an “interactive” state when it is 
ready to interact with the user. The screen is typically “on” at that time, but might be 
temporarily turned off (e.g. by the proximity sensor while the user is taking a call). The 
device is considered to be “interactive” also while at the “dreaming” state (akin to a 
screensaver mode). If the device is not interactive (i.e. sleeping), it typically requires 
the device to be woken up by pressing the power button. The actual state of the screen 
regardless of its “interactive” mode, can be separately captured at any time. Of these 
two features (interactive and screen state), we are mostly interested in “interactive” 
because when combined with the screen state ON value, we can be relatively sure that 
the user is currently engaged with the device, while a non-interactive state shows that 
the user’s attention is away from the device at the time of notification. 

We encountered 3 of the four possible screen states in our set. Table 4 shows the 
distribution of notifications by screen state and interactive state. As can be seen, our 
participants mostly received notifications while their device was at an interactive state 
with the screen turned on (69.63% of all notifications) or when the device was not in-
teractive with the screen also turned off (29.25%). Together these represent 98.88% of 
all cases and can be synthesized into another feature (Interactive-S). For these two pre-
dominant device states we plotted the diurnal distributions (Fig. 6) and note that the 
probability of a notification arriving while the device is non-interactive is considerably 
less in the later hours of the day (after 3pm and until 4am). This gives an indication of 
when our users were mostly active on their devices and presumably more likely to re-
spond to a notification quickly. 

Table 4. Distribution of received notifications based on device state. Combinations that synthe-
size the Interactive-S feature are highlighted bold. 

Screen state Interactive Frequency Percentage 
Off TRUE 81 0.64% 
 FALSE 3689 29.25% 
 Total 3770 29.89% 
On TRUE 8782 69.63% 
 FALSE 44 0.35% 
 Total 8826 69.98% 
Dozing TRUE 0 0.00% 
 FALSE 16 0.13% 
 Total 16 0.13% 
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Fig. 6. Diurnal distribution of notifications received in each device interactivity state, as a per-

centage of each state’s total (left) and of the total number of notifications (right) 

On one hand, these observations might explain the relatively steady diurnal reaction 
time observed, as users were mostly engaged with their devices while receiving notifi-
cations, thus exhibited similar engagement behaviour. On the other, we might have ex-
pected a rather more immediate response than the average 103.30 seconds given that 
the participants were already interacting with their device. Indeed, it appears that 
whether the device is in an interactive state or not, does not give useful insight to the 
responsiveness to incoming notifications. Linear modelling shows that the variability 
explained by the percentage of notifications received under either interactivity state is 
low (R2=0.087). This is a unique finding that shows that conceptually, there exists a 
lower temporal boundary for engagement and that responsiveness to notifications is a 
matter of conscious decision by the user, and not dependent on whether a notification 
is immediately noticed. 

5 Predicting Reaction to Notifications with Machine Learning 

In [7][6], the researchers attempt to predict whether the user is “likely” to attend to a 
notification. This is defined in [7] as a binary response to engaging with a notification 
regardless of response time, and in [6] using the median of response times to notifica-
tions as a threshold for classifying the user as having “high” or “low” attentiveness to 
the messages they receive. Following the latter approach, we selected two thresholds 
for attentiveness to notifications: “Extremely attentive”, using our median (T=16 sec-
onds) and “Highly attentive”, using the average response time of T=103 seconds and 
“Moderately attentive” using the T=6.15 minute threshold in [6]. Therefore we attempt 
to answer the question “Will the user respond to a given notification once it has been 
issued within, or outwith temporal threshold T?”. 

We aimed to examine how predictive modelling using the “raw” data set captured 
from our logging application compared to a synthesized data (“synth”), as well as an 
extended set of our synthesized data containing additional features (“synth+”) that we 
thought might be interesting to investigate (Table 5). The synth dataset is directly de-
rived from the raw data, which can then be discarded to minimize the privacy risk to 
the user. For analysis, we used a range of classification algorithms (Naïve Bayes, SVM 
with Multiquadric kernel, Random Forest, NN). For each algorithm, a 10-fold cross-
validation was performed using stratified sampling. The results are shown in Table 6. 
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Table 5. Features used for classification. “Interactive-S” is the synthesized interactive state as 
shown in Table 3. Attentiveness is the target variable. 

Data set Features Values Set size 
Raw Attentiveness 

Hour 
Interactive 

LED 
Sound 

Vibration 
Ringer mode 
Screen state 

High | Low 
[0-23] 

True | False 
True | False 
True | False 
True | False 

[Silent, Vibrate Only, Sound & Vibrate] 
[Off, On, Dozing] 

12,612 

Synthetic Attentiveness 
Hour 

Interactive-S 
Modality 

 

High | Low 
[0-23] 

True | False 
[---,--V,-SV,LSV,-S-,LS-,L--,L-V] 

12,471 

Syn-
thetic+ 

Attentiveness 
Hour 

Interactive-S 
Modality 

Lockscreen Notifications 
Package name 

User ID 

High | Low 
[0-23] 

True | False 
[---,--V,-SV,LSV,-S-,LS-,L--,L-V] 

True | False 
<string value> 

[1-14] 

12,471 

Table 6. Classification average F1-score results 

Classifier Raw dataset Synth Dataset Synth+ dataset 
Bayes – 16s 66.32% 66.40% 65.11% 
Bayes – 103s 71.97% 87.38% 87.57% 
Bayes – 369s 88.41% 95.32% 89.99% 
RF – 16s 66.67% 66.76% 67.03% 
RF – 103s 88.35% 88.35% 88.35% 
RF – 369s 95.42% 95.42% 95.42% 
SVM – 16s 67.12% 67.12% 67.12% 
SVM – 103s 88.35% 88.35% 88.35% 
SVM – 369s 95.42% 95.42% 95.42% 
DT – 16s 68.35% 66.79% 66.16% 
DT – 103s 88.17% 88.25% 88.04% 
DT – 369s 95.30% 95.40% 95.35% 
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Fig. 7. Classification performance (F-score averages). 

The immediate observation from the above is that prediction performance is strongly 
dependent on the attentiveness level set as the classification target. All classifiers per-
form exceptionally well (even the computationally inexpensive ones like baseline Na-
ïve Bayes and Decision Tree) at the “moderately attentive” threshold from literature. 
The result is explainable as this threshold is well above the average response time in 
our dataset. Interestingly, good performance is obtained for the 103s “highly attentive” 
threshold, reaching close to 90% for all classifiers and independent of the feature set 
used, showing that it is possible to infer whether a user will engage with a notification 
within 103 seconds from issuing, with high accuracy. From there on, performance de-
grades to about 65% for all classifiers for the “extremely attentive” (16s) threshold. 
Given that this threshold is the median of our dataset, the classifier’s performance is 
considered to be better than random (50% chance), but still improvements might be 
possible to make in this regard. 

Apart from these findings, it should be considered that the obtained results emerge 
from a very limited feature set, compared to previous literature that presents results 
based on large feature sets. We show that the baseline performance using the raw fea-
ture set is maintained when reducing the features through sensible combination to just 
four (in the “Synth” dataset). Additional features in the “Synth+” dataset show no sig-
nificant performance gain. This result hints that application type doesn’t seem to 
strongly affect response times, thereby user responsiveness to notifications seems to be 
a behavioral attitude [3, table 3] which covers all types of notification, rather than being 
selectively applied to certain types. We also note that user ID doesn’t seem to improve 
performance, hinting that personalization of predictive models might not be necessary, 
at least for homogeneous population types such our participants. This result confirms 
the findings in [5] where it was found that personalized models only have benefits in 
very specific prediction targets and that general models are overall more successful.  
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Fig. 8. Decision tree output (Synth dataset, 103s threshold). The blue proportion is the % of 
cases labelled as “not attentive” and red are the “attentive” cases. Root node is highlighted blue. 

To further investigate, we examine the most interesting case, i.e. the “Highly atten-
tive” threshold on the “Synth” dataset (least features), using the output from the com-
putationally cheap Decision Tree (Fig. 8). We notice that the most important feature is 
“Interactive-S”. If the device is not in an interactive state, then the Modality is the most 
important feature. The results show that using all modalities (LSV) the user is attentive 
to the notifications. When using only vibration-type modality (L-V), the result is de-
pendent on the Hour of day. For “silent” notifications (i.e. no modality or LED only) is 
most likely attentive to the notifications, and for “sound only”, users seem not attentive. 

As a final step, we also used the decision tree modelling procedure with the “Synth” 
dataset, to perform regression on the dataset and examine the model’s ability to predict 
the reaction time to notifications. With this procedure (10-fold cross validation) we 
achieve an average root mean squared error of µ=212.857 sec (σ=11.306s), which is 
about 3.5 minutes. The mean predicted response time (µ=102.91s, σ=64.77) is quite 
similar to the actual response time mean (µ=102.69s, σ=219.45) but as expected, the 
distributions are quite different and is skewed towards “later” predictions. When group-
ing by the feature value combinations, the response time ΔRT (predicted – actual) is 
greatest for feature values [Interactive-S=0; modality=-S-; hour=6]:668s and [Interac-
tive-S=0; modality=LS-; hour=14]: -1137s. However, we note that these feature value 
combinations only have one instance. For reference, best performance is observed for 
feature values [Interactive-S=1; modality=L-V; hour=21]: -0.006s (350 instances). 
When pruning the result set to include only those feature combinations whose instances 
make up for 95% of the dataset, and calculate the actual average ΔRT=-3.41s (σ=39.68) 
and |ΔRT|=20.03s (σ=34.37s). Therefore, we can claim that the usable prediction result 



15 

of the regression modelling is actually quite good: We can predict the time of response 
to notifications of any type an accuracy spanning at most 1 minute, using just 3 features. 

 
Fig. 9. With more instances per feature group, the average difference between actual and pre-

dicted response time converges to near zero. 

6 Conclusions 

As computational demands for resources in AmI environments increase in scale and 
complexity, a return to computing at the edge of the cloud is (somewhat ironically) seen 
by the community as the next forward step in context awareness [12]. The necessity of 
localized scalability and masking of uneven conditioning were foreseen in 2001 by 
[13], precisely to address the challenges of response time, battery life, bandwidth saving 
and data safety and privacy that edge computing aims to address.  

Our exploration of real-world notifications is just the 2nd paper in literature (besides 
[10]) to address a body of notifications from all apps that a user has enabled on their 
device. In contrast with previous research, we have attempted to reduce the feature set 
for our classifier and prediction algorithms as much as possible. This approach results 
in lower storage, computational complexity, increased privacy for users and therefore 
better performance and power saving, if the classifiers and regressors are ran locally on 
the user device, as well as bandwidth saving if the data is uploaded for cloud processing. 
We demonstrate that “brute forcing” features into predictive models doesn’t necessarily 
equate to better results, as we achieve very good outcomes in terms of both predicting 
the level of attentiveness and the actual response time to notifications, with just three 
synthesized features from a small number of raw data features (that can be discarded). 
The natural next step would be to explore the performance of our model in the wild, 
assessing its performance with unseen data and using it to drive intelligent notification 
deferment and modality choice policies. It would also be good to investigate gender 
aspects with a larger group of users, since in the current study, the group sizes are too 
small to provide adequate power for anything other than very large effects. 

Our users were a homogeneous group and this places some limits on the generaliza-
bility of our findings beyond such users. However, this limitation also indicates that 
might be little need for personalized modelling in homogeneous user groups, which can 
overcome the “starting user” problem by partially sharing data between peers (e.g. 
groups of friends, relatives or the local community): in a sense, how we respond to 
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notifications is, partly, a result of what others around us are doing. In future work we 
aim to examine privacy-preserving architectures for sharing such context and behaviour 
with new users transitioning across different local or regional cultures at different scales 
(e.g. tourists in new countries, or locals visiting a restaurant for the first time), in order 
to help devices automatically adapt their notification management support for users.  
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