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Abstract Location semantics are important for the delivery of context-aware
ubiquitous services to users, such as the contextually-relevant handling of inter-
ruptions on mobile devices. For such purposes, user coordinates can be used to
query global venue databases, to get back the likely venue (and its categories)
where the user is located. This potentially compromises user privacy, allowing ser-
vice providers to track users. We analyse data from a longitudinal study of 44
participants (university students and sta↵ in Patras, Greece), including notifica-
tion handling, device state and location information. Using semantic labels from
the Google Places API as ground truth, we demonstrate that it is possible to se-
mantically label a user’s location based on their notification handling behaviour,
even when location coordinates are obfuscated so as not to precisely match known
venue locations. On the other hand, the reliability of this ground truth is ques-
tioned through a crowdsourcing exercise. We demonstrate that Places API data
can only be reliably used for some venue categories, and recommend best practices
for using such data to establish ground truth in location context aware services.

Keywords Interruption management · Mobile notifications · Semantic location
labelling · Location Services.

1 Introduction

As users of mobile devices roam through urban environments, a wealth of data
can be collected from their devices about their current whereabouts and activities.
While it is relatively easy to obtain the location of a user, within a given accuracy
estimate (e.g. through GPS, connection to Wi-Fi or 4G networks), a harder task
is to assign semantics to the user’s location. The typical method of resolving this,
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is by comparing the user’s coordinates against a database of known locations,
and there are several commercial services that o↵er this type of information (e.g.
Google Places API). Therefore, given a user’s location coordinates, it is relatively
easy to obtain the venue and venue type that a user might currently be at, and
therefore to infer their current activity (e.g., they are at Cinema X, and thus quite
likely watching a movie). More formally, from positioning data (coordinates), one
could infer various abstractions of the location semantics (e.g. the venue name,
the venue type, the venue’s function, the purpose of visitation, etc.). Naturally,
it’s not always useful, or necessary, to obtain a complete picture of all semantic
knowledge about a location, in order to o↵er a ubiquitous service. In fact, respect
for the user’s privacy requires that only the knowledge which is necessary to deliver
a service should be obtained, deduced or inferred by a provider.

To demonstrate, let’s consider the example of o↵ering contextually relevant
notification handling to users. Currently, users are left on their own in terms of
how they might manage notifications under di↵erent contexts (Auda et al, 2018).
However, automatic notification management can o↵er opportunities for a better
and more socially aware mobile use experience (Anderson et al, 2018). Taking the
cinema example mentioned earlier, a device could automatically suppress incoming
notifications which are not relevant at the current location, as per Saikia and She
(2017), or automatically set the device ringer mode to silent for the duration of
the user’s stay at that location.

There are several confounding factors to being able to achieve this goal. First,
user location coordinates might not be available, or accurate enough to provide
a reasonable estimate of venue (e.g. the user might be indoors, or the user might
be connected to a sparse 4G network only). Even more, for services such as this
to work, the user’s location needs to be sent to a remote server, potentially com-
promising user privacy. Finally, it’s not really necessary for the service to know
exactly which cinema the user is at - only the fact that the user is located at a
cinema is enough for the service to fulfil its purpose.

As discussed in existing literature, users receive a significant volume of noti-
fications during the day, from on-device events (e.g. network availability, battery
status) and external services (e.g. instant messaging), which can reach several hun-
dreds (Visuri et al, 2019). These events can become opportune moments for assess-
ing the user’s location. The user behaviour in handling these notification events
can vary significantly across time (Komninos et al, 2018), and we can assume that
the behavioural choices are influenced by the location context and semantics as
well, even though there is no previous literature to investigate this. For example,
while watching a movie at the cinema, the user might take longer to notice an
incoming notification since their device will probably be set to ”silent mode” and
tucked away, or even if they do, they might chose to ignore it until the show is
over.

This paper is an extended version of our previous publication at AmI2019
(Komninos et al, 2019). In that paper, and also presented here in Sections 3 and
4, we explore the use of notification handling behaviour and device state infor-
mation, as an additional source of information for overcoming problems with user
coordinate availability and accuracy. Using supervised machine learning algorithms
on a dataset of notification and location samples from several users, we predict
user location semantics and demonstrate that notification handling behaviour can
overcome the problem of location accuracy. Additional contributions in this pa-
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Where am I? 3

per, on top of our previously reported findings, are presented in Section 5. They
constitute additional work that address a major limitation of our previous publi-
cation, namely the reliance on Google Places API as a source for location semantic
labels. Using a crowdsourcing technique, we find that a large number of venues are
incorrectly labelled by the API. As a result, we are able to significantly improve
the reliability of our machine-learning approach, using the crowdsourced semantic
labels.

2 Related work

Discovering location semantics is the research e↵ort directed towards assigning cat-
egorical labels (e.g. ”Home”, ”School”, ”Shop”) to venues represented in a dataset
with at least a set of coordinates (latitude, longitude) and optionally a given name
(e.g. ”Mike’s cafe”). Location semantics are important for a range of location based
services, such as point-of-interest (POI) search and recommendation. Commercial
applications such as Google Maps, Foursquare and Tripadvisor maintain large
databases of POIs, relying largely on users adding and/or modifying these. One
issue with this approach is that represented venues are not always correctly se-
mantically labelled by the users, and also the reliance on user e↵ort means that
many real-world POIs may be often left out of the service. Previous research has
frequently focused on the automatic semantic labelling of locations, with a variety
of means. An overview of related work, including datasets used, classifier types,
feature types and resulting performance is shown in Table 1. Researchers have ex-
amined features based on data ”fingerprints” left by users, such as user behaviour
(e.g. check-in locations and temporal patterns), linguistic behaviour (tweet con-
tent), relationship to other users also present at a location, which are easy to mine
from publicly available datasets. Others have supplemented these with additional
hardware-based features from users’ mobiles, such as application use, calling and
texting behaviour, battery status etc. These constitute a more significant invasion
of privacy and are hard to collect at a large scale for research use.

There are some common themes in the previous literature, which can be iden-
tified. First, where multiple classifiers have been used (e.g. decision trees, SVMs,
random forests), the results do not seem to vary significantly. Most often, it is the
type and number of features introduced to the model which have the most impact.
Secondly, a larger number of categories makes the likelihood of misclassifications
higher. Another issue is that in most papers, there is a significant class imbalance
in the datasets used. This is somewhat problematic since in most reviewed works,
the measure of accuracy is used, which is heavily influenced by the prevalence
of certain categories (Akosa, 2017). Hence, comparisons with the performance of
these previous approaches is done with some hesitation.

To the best of our knowledge, the use of notification handling behaviour as a
feature for semantic place labelling has not been investigated in the past. Hence
the goal of our paper is to explore how this information can be used for the task of
semantic place labelling. We also attempt classification at a more fine-grained level
(24 categories). Further, rather than taking the root-level categories from category
hierarchies, or focusing only on the top-N most frequent categories in the dataset,
as done in many papers, we adopt a more methodical approach to deriving the
final categories to use.
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4 A. Komninos et al.

Paper Data Model Features Target Performance
Celik
and
Incel
(2018)

Own
dataset

RF Time, network,
human activity,
app use, sys-
tem

Place category
(10 types)

Accuracy,
71%

Falcone
et al
(2014)

Twitter J48, Deci-
sion Table,
Multilayered
Perceptron,
Bayesian Net-
work, K* and
LogitBoost

Spatiotemporal
visitation
statistics,
tweet statistics

Place category
(8 types)

Accuracy,
67%

Gu
et al
(2016)

FoursquareSocial friend-
ship, trust
model and
check-in model

Foursquare
check-ins and
social network
relationships

Home label Accuracy,
up to 92%

He et al
(2016)

FoursquareModel based on
spatiotemporal
and textual
features

Spatiotemporal
check-in statis-
tics, user
ratings, user
comments

Place category
(unspecified
number)

Accuracy,
63%

Huang
et al
(2012)

Nokia
MDC

multilevel
classification
models (e.g.,
SVM, J48,
RF, LMT,
PART, SMO,
SipleLogistic)

Location vis-
itation and
spatial statis-
tics, App usage
and Device
statistics,
Communica-
tion statistics,
Network statis-
tics

Place category
(10 types)

Accuracy
(REPTree)
66%.

Kinsella
et al
(2011)

Twitter Language mod-
els

Tweet content
and coordi-
nates

User country,
state, town,
zipcode

Accuracy
Country
(76%),
State
(45%),
Town
(32%),
Zipcode
(15%).

Krumm
and
Rouhana
(2013)

ATUS
and
PSRC
datasets

Boosted deci-
sion trees

User statis-
tics, visitation
statistics, tem-
poral context

Place category
(ATUS: 14
types, PSRC:
13 types)

Accuracy,
ATUS: 73%,
PSRC: 74%

Leppäkoski
et al
(2017)

Nokia
MDC,
Mi-
crosoft

NB, DT,
Bagged Tree,
NN, KNN,
SVM, LogReg,

Time, network,
human activity,
app use, sys-
tem, call log

Place category
(10 and 3
types)

Accuracy,
69% (10
types), 89%
(3 types)

Mahmud
et al
(2012)

Twitter ensemble of
statistical
and heuristic
classifiers

Tweet fre-
quency &
content

User city, state,
timezone

Recall
City (
58%), State
(66%),
Timezone
(78%)

Wu
et al
(2017)

Nokia
MDC,
ATUS

Näıve Bayes,
RF, J48

Time, app
ise, call log,
system, me-
dia, network
features

Place category
(9 types)

Accuracy,
74%

Yang
et al
(2016)

FoursquareKNN classi-
fier (Sketch-
MinMax-
Weighted)

Foursquare
check-ins

Place category
(9 types)

Accuracy,
⇡65%.

Ye et al
(2011)

FoursquareSVM Check-in
statistics, re-
latedness of
venues

Place category
(199 types)

Precision
⇡80%

Zhu
et al
(2013)

Nokia
MDC

LogReg, SVM,
GBT, RF

Time, acceler-
ation, network,
app use, call
log, system and
media features

Place category
(10 types)

Accuracy,
75%

Table 1: Overview of past work in predicting location semantics
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Where am I? 5

3 Study methodology

3.1 Apparatus and participants

We developed a UI-less notification logging application for Android devices, which
runs unobtrusively on the device as a background service. We collected features
about incoming notifications and the user’s device state at the time of issue. For
this, we used the Android NotificationListener service, which allows our appli-
cation to be informed with the details of every notification, as soon as it is issued
by any app or the operating system. The NotificationListener service returns
a Notification object which contains all the necessary information, especially
about programmed modality, in a consistent way across all API versions. We also
employed a range of other Android APIs to capture device context from hardware
states (e.g. PowerManager, DisplayManager).

We also exploited the Google Places API to retrieve details about the user’s
presumed location at the time of notification issue. This API requests the user’s
location coordinates, and returns a list of likely places where the user is located,
along with a confidence level. We logged the place which had the highest confidence
value. The data features collected are discussed in detail in section 3.3. All data
was uploaded to a remote server at frequent intervals during the day, provided the
user had wi-fi connectivity.

A call for participation was issued to undergraduate students at our local
university. The application was installed on their device, a consent form was signed
and participants were instructed that they could quit the study at any time. The
study automatically ended after 3 months of use. They were requested to leave
location services enabled on their device for the duration of the study, although
we did not enforce this condition. In total, 44 participants took part in the study
(26 female). From this set of participants, we excluded several participants who
participated for fewer than 10 days and who provided fewer than 50 notification
log entries, resulting in a subset of 31 participants. Participants provided data that
spanned an average of 30.87 days (sd=16.15, min=13, max=84).

3.2 Dataset preparation

In total we collected 204,074 notifications from the users. In the dataset, we noticed
that a significant number of notifications (38,400) were issued by the system and
immediately dismissed. This phenomenon was observed for all users, although for
some users the proportion of such notifications was unusually large. We are not
certain why this happens. Further investigation of the package name showed that
some system applications might be issuing such notifications (perhaps as a means
of interprocess communication), although it might be the case that a user is also
manually quickly dismissing some notifications (within the resolution of 1 second).
We decided to exclude such notifications from the dataset. Further, we removed
from the dataset all notifications for which the “flag” feature values indicated
that they were ongoing events and not user-dismissable (e.g. an ongoing phonecall
or download). These notifications are automatically dismissed by the system and
hence o↵er no value to our research goal. From the remaining notifications, a
significant number did not contain location information, since the user’s location
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6 A. Komninos et al.

services might have been switched o↵ at the time, or the service might not have
been available. We also excluded these from the dataset. After these exclusions,
the dataset contained 59,221 user-dismissed notifications with location details.

(a) Entire dataset (b) Response time < 3h

Fig. 1: Distribution of response time (in seconds) to notifications (100 bins)

Examining the pruned dataset, we observed that the average response time
to notifications is 1,366.93s (sd=11,255.82), with a maximum response time of
562,302s. A histogram of response time to notifications shows a power-law distri-
bution (Fig. 1). Based on this observation, we limited the dataset to only notifica-
tions that were attended to within 3 hours of issue, resulting in 57,737 notifications
(97.5% of the original dataset). As can be seen, even after culling the dataset fur-
ther, the distribution of response times to notifications maintains a power-law
shape. This finding is consistent with previous works such as (Komninos et al,
2018).

3.3 Dataset features

To address the problem at hand, we used raw and synthetic features obtained from
the user’s device. To begin, the raw data features collected from users are shown
in Table 2. Something to note here is that while all devices support sound and
vibration for notifications, not all devices incorporate the status LED. All except
two of our participants had phones incorporating a status LED, hence we maintain
this feature.

From these raw features we synthesized a further set of features, to create
the final dataset to be used for prediction, as shown in Table 3. First, we used
the current device ringer mode and programmed notification modalities (custom
or default) to determine the true modalities used to deliver the notification, as
per (Komninos et al, 2018). An illustration of how the combination of the raw
features for modality and ringer mode result into the synthetic modality features
is shown in Table 4. Further, a place can belong to multiple categories. These
are reported in a non-ordered list by Google, ostensibly therefore the order of
appearance shows the prevalence of a category type (e.g. ”Bar, Restaurant, Cafe”
shows that a place is primarily of type ”Bar”, but also functions as a restaurant
and cafe). We therefore extract the primary category of a venue. In doing so,
we observed that many places included the vague category ”Point of Interest”.
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Table 2: Raw data features collected

Notification Details
Time posted Unix timestamp of notification issue
Time dismissed Unix timestamp of notification dismissal
Package name Application that created the notification
Sound Whether the notification was programmed to issue a

custom sound alert
LED Whether the notification was programmed to issue a

custom status LED blink pattern
Vibration Whether the notification was programmed to issue a

custom vibration pattern
DefaultSound Whether the notification was programmed to use the

default sound alert
DefaultLED Whether the notification was programmed to use the

default status LED blink pattern
DefaultVibration Whether the notification was programmed to use the

default vibration pattern
Priority The notification priority category
Notification flags Additional information about the notification

Device state
Ringer mode The current device ringer mode (Normal, Vibrate,

Silent)
Idle state Whether the device is in an idle state
Interactive state Whether the device is in a state ready to interact with

the user (screen on, processor awake)
Lockscreen notifications allowed Whether notifications are visible from the user’s lock

screen
Location Details

Place name Name of the most likely current place
Place categories The categories assigned to the most likely current place
Confidence Confidence of reporting the most likely current place
Latitude Decimal coordinates of the most likely current place
Longitude Decimal coordinates of the most likely current place

Hence, where this was the primary category, it was replaced by the immediately
subsequent category type.

Another note here relates to Google’s list of categories, where 127 di↵erent cat-
egories are listed. Predicting on 127 category classes is possible, but presents an
unnecessary complexity to the problem, as many venue categories are quite similar
in nature and it can be expected that a user will exhibit similar behavioural pat-
terns in these. For example, ”Church” and ”Mosque” are both places of worship,
where devices are typically kept on silent, and users do not readily engage in noti-
fication handling. We therefore attempted to group the individual categories into
larger sets, as per Table 5. Ultimately, we assigned to each place the super-category
to which it belongs, based on its primary category type. Ultimately, we assigned to
each place the super-category to which it belongs, based on its primary category
type. An exception to this were the ”Miscellaneous” and ”Entertainment areas”
categories, since for these the user behaviour might be quite di↵erent depending
on conditions (e.g. a user probably can’t notice a notification in a night club as
easily as in a cafe), hence for these we used the primary categories ungrouped. As a
result, we find that the user notifications were issued at 24 distinct place categories
and distributed unevenly (Table 5, non-grouped primary categories capitalised).
Finally, it’s important to note that the location coordinates collected by our app,
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8 A. Komninos et al.

Table 3: Final feature set

Notification Details
Response time Time dismissed - time posted Synthetic
Hour issued Hour of day at notification issue [0-23] Synthetic
Day of week issued Day of week at notification issue [1-7] Synthetic
Had Sound Whether the notification was issued with a sound Synthetic
Had LED Whether the notification was issued with a LED

blinking pattern
Synthetic

Had Vibration Whether the notification was issued with a vibra-
tion pattern

Synthetic

Priority The notification priority category Raw
Device state

Idle state Whether the device is in an idle state Raw
Interactive state Whether the device is in a state ready to interact

with the user (screen on, processor awake)
Raw

Lockscreen notifica-
tions allowed

Whether notifications are visible from the user’s
lock screen

Raw

Location Details
Place category The primary place category Synthetic
Latitude Decimal coordinates of the most likely current place Raw
Longitude Decimal coordinates of the most likely current place Raw

Table 4: An example of synthesis of the true modality feature values, based on
raw feature values at the time of notification issue. The example assumes that
the app developer specified that a notification should be issued with a sound clip,
vibration pattern and LED blink pattern, using programmer-specified or system
default options for each.

Raw Feature Values Example
Sound Vibration LED

Programmed Modality 1 1 1
Synthetic Feature Values based on Ringer Mode
Had Sound Had Vibration Had LED

Ringer Mode ”Normal” 1 1 1
Ringer Mode ”Vibrate” 0 1 1
Ringer Mode ”Silent” 0 0 1

are not the user’s actual coordinates, but the coordinates of the venue that is the
user’s most likely current place, as reported back by Google’s API. We do not
store the user’s actual location coordinates for privacy reasons.

As can be seen in Fig. 2a, users receive a varying amount of notifications
throughout the day. The distribution is similar to that reported in previous liter-
ature, such as (Celik and Incel, 2018). More importantly, we note that the diurnal
distribution varies distinctly across categories, as exemplified in Fig. 2b. This is
an expected result, since di↵erent venue types exhibit di↵erent diurnal visitation
patterns (Falcone et al, 2014). Further, we note the distribution of response times
to various notifications on a hourly basis (Fig. 3a). The pattern is similar to the
findings in (Komninos et al, 2018), showing the distinct user behaviour in handling
notifications throughout the day. Distinct response time averages are also noted
across the categories (Fig. 3b shows three category examples). Furthermore, while
it could be intuitively assumed that a ”Normal” ringer mode might lead to shorter
reactions to notifications, we note that the mean response time is not drastically
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Where am I? 9

Table 5: Grouped place categories

Category group Categories Samples
Accomodation Campground, Lodging, Room, Rv Park 1,350
Address Administrative Area Level 1, Administrative Area

Level 2, Administrative Area Level 3, Country,
Geocode, Locality, Political, Post Box, Postal Code,
Postal Code Prefix, Postal Town, Street Address,
Sublocality, Sublocality Level 1, Sublocality Level 2,
Sublocality Level 3, Sublocality Level 4, Sublocality
Level 5, Synthetic Geocode

86

Civil Services City Hall, Courthouse, Embassy, Fire Station, Local
Government O�ce, Police, Post O�ce

89

Contractors Electrician, General Contractor, Moving Company,
Painter, Plumber, Roofing Contractor

76

Education Library, School, University 11,996
Entertainment Areas Amusement Park, Aquarium, Bar, Bowling Alley,

Cafe, Casino, Gym, Movie Theater, Museum, Night
Club, Restaurant, Stadium, Zoo

11,157

Financial Services Bank, Atm, Finance 93
Healthcare Dentist, Doctor, Health, Hospital, Physiotherapist 617
Miscellaneous Establishment, Floor, Other, Point Of Interest,

Premise, Subpremise
18,347

Outdoor Areas Colloquial Area, Natural Feature, Neighborhood,
Park, Parking, Route

516

Personal Care Beauty Salon, Hair Care, Spa 1,104
Place Of Worship Cemetery, Church, Hindu Temple, Mosque, Place Of

Worship, Synagogue
758

Professional Services Lawyer, Accounting, Car Dealer, Car Rental, Car Re-
pair, Car Wash, Funeral Home, Insurance Agency,
Laundry, Locksmith, Real Estate Agency, Storage,
Travel Agency, Veterinary Care

659

Public Transport Airport, Bus Station, Intersection, Subway Station,
Taxi Stand, Train Station, Transit Station

580

Shopping Art Gallery, Bakery, Bicycle Store, Book Store, Cloth-
ing Store, Convenience Store, Department Store, Elec-
tronics Store, Florist, Food, Furniture Store, Gas Sta-
tion, Grocery Or Supermarket, Hardware Store, Home
Goods Store, Jewelry Store, Liquor Store, Meal Deliv-
ery, Meal Takeaway, Movie Rental, Pet Store, Phar-
macy, Shoe Store, Shopping Mall, Store

10,309

di↵erent (Fig. 4a). The examples in Fig. 4b demonstrate that attentiveness to the
device is not simply dependent on device ringer mode, but is mediated by other
factors, such as time of day, current user activity and/or social norms. For exam-
ple, while response times are largely similar at cafes with any ringer mode, we can
see that it is much longer with the ringer mode on Silent when the users are at
an education venue. The placement of the device on Silent and the long response
time demonstrate high engagement with the task context at hand (learning).

4 Study 1: Predicting user location category

In this section, we attempt to predict the category of the user’s current location
based on notification handling features in Table 3. This is, in essence, a multino-
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(a) All notifications

(b) Example categories

Fig. 2: Diurnal distribution of notifications

(a) Diurnal, all notifications (error band at 95%c.i.)

(b) Per place category (error bars at 95%c.i.)

Fig. 3: Distribution of response time to notifications

mial classification task using Place Category as the target. Implementation of the
analysis process was done with the RapidMinder software platform.

4.1 Classifier and parameter selection

We used decision tree classifiers, since they have been shown to demonstrate com-
parable performance to other methods (Falcone et al, 2014). To tune the classifier
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Where am I? 11

(a) Per ringer mode, all categories (b) Example categories

Fig. 4: Average response time to notifications per ringer mode

hyperparameters, we employed RapidMiner’s evolutionary parameter tuning pro-
cess on a small hold-out dataset. The final parameters used for the decision tree are
Maximal depth:23, Minimal gain:0.013, Minimal leaf size:2, Minimal split size:4.
Throughout the analysis reported in the following sections, we used a 10-fold
cross-validation approach. We note that there is an imbalance in the frequency of
location categories (Table 5), hence for performance we adopt the F-score (macro-
averaged), which is more appropriate for imbalanced datasets (He and Ma, 2013),
compared to the accuracy measure usually encountered in previous literature.

4.2 Decision tree modelling performance

As a starting point, we apply the decision tree classification algorithm to the en-
tire dataset. To clarify the process further, the classifier is fed with all features
as shown in Table 3, and returns the predicted place category. We assume the
user’s location is the same as each venue’s reported coordinates. Therefore, given
the user’s notification handling behaviour, their location, and the device state,
we attempt to predict the type of venue that they are currently at. Overall, we
obtained a macro F-score µ. 88.96%, �=11.05%). Examining the results, we won-
dered whether the broader categories ”Miscellaneous” and ”Entertainment areas”
categories might be best split up, since for these the user behaviour might be quite
di↵erent depending on conditions (e.g. a user probably can’t notice a notification
in a night club as easily as in a cafe), hence for the rest of the analysis, we used
these two categories ungrouped.

As seen in Fig. 5, the classification performance remains quite good for most
categories (F-score macro µ. 82.9%, �=12.6%). During analysis, we noted that
there is some discrepancy in the confidence reported for the most likely current
user place, across the place categories (Fig. 6). For this reason, we decided to
repeat the analysis in multiple steps, each time limiting the dataset to contain
only notifications reported where the most likely current user place was reported
above a certain confidence threshold T 2 [0, 0.1, ..0.9]. The results are shown in
Fig. 7. We note that the average F-score is not majorly a↵ected by the reduction of
the dataset, however the best nominal performance is achieved when considering
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venues reported with a confidence threshold T � 0.7 (µ=84.6%, �=13.51%, dataset
size = 13,558 entries).

Fig. 5: Average F-score using decision trees, all notifications

Fig. 6: Average confidence of most likely user place, all notifications, error band
at 95%c.i.

Fig. 7: Average F-score using decision trees (error bars at 95%c.i.)
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Where am I? 13

4.3 Modelling with inaccurate user coordinates

In the preceding analysis, we assumed that a user’s current coordinates are the
same as those corresponding to places reported by Google’s API. Of course, it
would be rare that the user’s actual coordinates would be precisely the same as
those that match a specific venue, especially for venues that cover a large area (e.g.
outdoor parks). To overcome this limitation, we proceeded to modify the user’s
coordinates by adding random noise to the known place coordinates (latitude and
longitude). This noise was applied to each coordinate component individually,
following a Gaussian distribution with a standard deviation set by us. The noise
standard deviation was calculated using the formula n ⇥ 10�x and was applied
to each coordinate component (latitude and longitude), therefore the resulting
random coordinates would fall within a certain circular range of a specific venue.
An example of how this process generates the random user coordinates within a
gaussian distance distribution of a specific venue is shown in Table 6. Distance is
calculated using the Haversine formula.

Table 6: Sample random coordinate range generation

Noise � Lat Lng Dist. at 1� (m)
0 (Place coords.) 38.2836678 21.7889705 0
1.0⇥ 10�6 38.28370608 21.78899229 4.7
2.0⇥ 10�6 38.28374437 21.78901408 9.3
3.0⇥ 10�6 38.28378265 21.78903587 14.0
4.0⇥ 10�6 38.28382093 21.78905766 18.6
5.0⇥ 10�6 38.28385922 21.78907944 23.3

To assess the e↵ect of imprecise user coordinates, we repeated the analysis for
each value of n 2 [1, 2, .., 9], limiting the dataset to locations with a confidence
threshold T � 0.7, since this achieved the best nominal performance in the pre-
ceding analysis. As can be seen in Fig. 8, the algorithm remains quite robust when
adding noise to the decimal coordinates with a �  9⇥10�6 (⇡42m), after which,
performance begins to deteriorate.

At this point, it becomes interesting to observe which categories su↵er the
heaviest penalty then the user coordinates are further away from the actual place
coordinates. Taking the largest noise � distance (233.1m), we note that the cat-
egories Place of worship, Outdoor areas, Professional services, Stadium and Civil
services take the worst hit between -35.46% and -55.45% reduction of their F-
score, compared to the smallest � (4.7m). On the other hand, some categories like
Shopping and Cafe only take a small penalty (-7.56% and -7.20%) respectively.
The explanation for this possibly rests in the spatial clustering of these venue
types (e.g. see Fig. 9). In Fig. 9, we see that cafes are mostly clustered together,
hence we may not be able to accurately guess exactly which cafe a user is at, but
we can be quite certain that they might be at some cafe, as long as their loca-
tion and notification response behaviour is proximal to that captured at a nearby
cafes. Although this might suggest that spatial distribution may have a significant
e↵ect on the accuracy of the classifier, it must be borne in mind that this is a
very extreme scenario. Most users’ location data is obtained via A-GPS, which, in
an urban environment, has been shown to have an accuracy of about 9m (Zand-
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bergen, 2009). In any case, we might expect similar results to be generalisable to
many similar-sized cities, since it has been shown that a representation of cities as
m-dimensional vectors based on their venue categories can uncover the similarities
between them (Preoţiuc-Pietro et al, 2013).

Fig. 8: Average F-score using decision trees, under random coordinate input noise
(error band at 95%c.i.)

(a) Cafe category (b) Places of worship category

Fig. 9: Spatial distribution of places in our dataset

4.4 E↵ect of user location coordinates

In the preceding analysis, one of the input features is the user’s location. This fea-
ture is certainly obtainable from the user, but its availability depends on whether
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Where am I? 15

a user has enabled positioning on their device, their surroundings (indoors or out-
doors) and connectivity (wi-fi, 4G, o↵). So far we have demonstrated that guessing
the user’s current location type is possible based on their notification behaviour,
device state and geographic location, even if the latter is not precisely correspon-
dent to a known place. For the next step, we wanted to experiment without tak-
ing user position coordinates into account. The same process as in the previous
analysis was repeated, limiting the dataset iteratively to contain notifications at
locations above a confidence threshold T . As shown in Fig. 10 the results are much
worse than in our previous analysis, showing that the prediction model depends
heavily on the knowledge of the user’s coordinates, even though these do not nec-
essarily need to correspond with great precision to the true location’s coordinates.
The reduction of the dataset size has no major impact on the performance of the
classification.

Fig. 10: Average F-score using decision trees (error bands at 95%c.i.)

5 Study 2: Obtaining reliable ground truth

In Study 1, we used the location semantic labels as reported by the Google Places
API, in order to train our machine learning algorithm and validate its results.
This means that we treated the Places API results as the ”ground truth” for
the entire study. However, this assumption does not necessarily hold. Previous
work by Hochmair et al. (Hochmair et al, 2018) has highlighted the lack of actual
”ground truth” POI datasets, and that various POI databases (e.g. by Google,
OSM, Facebook, Yelp and others) provide varying degrees of quality in terms of
coverage, position and classification accuracy. In this work, the Google dataset
is found to be one of the most reliable, even though the researchers assessed the
dataset quality for a single European city only (Salzburg). Since the population
target from which we collected data refers to another country (Greece), we cannot
be certain regarding the quality of Google Places data for the regions covered by
our participants. Therefore, in Study 2, we attempted to establish a more reliable
ground truth for locations covered in our dataset, and to repeat the analysis as
in Study 1, this time using these more reliable location semantics to train and
validate the machine-learning algorithms.
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5.1 Region of interest

Since we recruited students from our university, located in Patras, Greece, as can
be expected, the majority of the notification data were gathered at POIs located
in that city, although a number of notifications were collected in nearby cities
or even far away countries, due to participant mobility through the experiment.
Our original dataset contained 2,210 unique POIs and though the vast majority
were located in Greece, it also included POIs in some in three countries (Bulgaria,
Cyprus and Russia). To narrow down the problem, we chose to focus on POIs
located in Patras and, more specifically, excluded from the dataset any notifications
and associated locations outside a bounding box that includes the city center and
its surrounding neighbourhoods, as well as the university campus that is located
approximately 8km from the city center. Furthermore, we removed POIs that had
fewer than 5 notifications, in order to focus on locations that were systematically
visited, and therefore would not artificially dilute the quality of available data. As
a result of this pruning, the resulting dataset contained 419 unique POIs (Fig. 11).

Fig. 11: Venues in the target area (Patras, Greece) present in our dataset. The
spread of venues in a wider geographic area is shown in the inset.
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5.2 Crowdsourcing the ground truth

In order to obtain a more reliable ground truth for the classification of these
419 POIs, we decided to engage in a crowdsourcing experiment. To this end, we
developed a simple web application in responsive HTML5 (Fig. 12), which queried
users about the semantic classification of 20 semi-randomly chosen POIs from the
pool of 419. Our goal was to obtain multiple user classifications for each venue,
so that we could determine the best label for each POI by selecting the its most
frequently selected label. Since a completely random selection could result in some
POIs gathering many more responses than others, we prioritised the selection of
POIs which had received the fewest responses, so that they would be more likely
to be chosen to be presented to a user.

In the web app, we showed participants the POI name (Fig. 12-A), its location
on the map (Fig. 12-B), and presented them with some options. At first, a par-
ticipant had to indicate whether they were familiar with that POI (Fig. 12-C). If
they were not, the rest of the options were disabled and the participant could move
to the next one. Otherwise, we asked participants to select the Category Group
(cf. Table 5) to which they believe this POI belonged to (Fig. 12-D), giving them
a free choice between the 14 category groups, and adding ”Other” as a further
option. Additionally, we asked participants to indicate the believed primary (Fig.
12-E) and secondary category of the POI (Fig. 12-F), however, for these, the op-
tions were limited to the categories reported by the Places API only, (or ”Other”).
Participants could also select the level of confidence for each of these choices on
a scale between 1 (not confident at all) and 5 (very confident), using the sliders
(Fig. 12-D*;E*;F*).

Fig. 12: Crowdsourcing web app UI. The various UI elements are marked in orange
font with a black background

We publicised the crowdsourcing app to a range of Facebook groups relating
to students and residents in Patras, over a period of 2 weeks. Overall, we received
valid responses (completed questionnaires) from 133 participants (male: 62; fe-
male: 71; other: 0). Basic demographics were collected by allowing participants to
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select between value ranges for age and years living in Patras. Participant ages
varied, with the majority being relatively young adults, as can be expected due
to recruitment from social media (18-25: 57; 26-30: 38; 31-40: 20; 40+: 18). The
majority of participants lived in Patras for quite a number of years (0-3 years:
12; 4-9 years: 33; 10-15 years: 9; 16+ years: 79) and hence can be considered to
be reasonably familiar with the city. We also asked them about their education
level, with the majority being university or masters degree holders (high-school
graduate: 42, university graduate: 55; masters graduate: 31; PhD graduate: 5).

We also captured the time it took participants to complete the questionnaire,
in order to ensure that they were spending at least some time to reflect on their
choices and thus to provide valid responses, and not simply clicking through the
presented POIs. On average, participants spent 11m58s to complete the questions
(� = 6m10s,min = 3m15s;max = 37m08s). As such we consider all responses to
be valid and included them in the ensuing analysis.

5.3 Crowdsourcing results

Due to an unexpected logging error, 10 venues ended up being excluded from
the dataset, hence we present results for the remaining 409 POIs. From the 133
participants, only 5 indicated that they did not know any of the 20 places shown
to them. For the rest of the participants, on average, they indicated being familiar
with 11 of the 20 POIs shown to them on average (� = 3.454,min = 3,max = 20).
For these POIs, the average confidence in reporting the general category was quite
high (µ = 4.580,� = 0.459,min = 3,max = 5). As expected, not every POI
gathered the same amount of responses, owing to the semi-random selection of
POIs for presentation, and the varying familiarity of participants with the POIs
presented to them. To determine the final category group of each POI, we selected
the majority choice as reported by participants. In cases where the choices were
tied, we selected one at random. As can be seen in Figure 13, all POIs received at
least one response, with the majority of POIs receiving up to 5 responses.

Fig. 13: Distribution of crowdsourced response frequency for POIs

Overall, we found 204 POIs (49.89%) where the participant classification dif-
fered from the original classification derived from the Places API results. This is
a significant finding that indicates that the quality of the data o↵ered by Google
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for our region of interest is not as high as expected. In Table 7 we present an
outline of the issues encountered in this analysis. As can be seen, the largest prob-
lem appears in the Miscellaneous, Professional Services and Shopping categories.
Other categories such as Contractors show a large proportion of mismatches but
are generally under-represented in our dataset. Notably, the Miscellaneous cate-
gory is probably the place where the crowdsourcing exercise o↵ers the most value,
since it has allowed for a more specific classification of POIs instead of this generic
description.

Table 7: Mismatch between Places API-derived and crowdsourcing-derived group
categories

Category Group Matches with
Places API

Mismatches with
Places API

Mismatch %

Contractors 0 2 100.00%
Miscellaneous 3 102 97.14%
Outdoor areas 2 3 60.00%
Professional services 7 10 58.82%
Personal care 2 2 50.00%
Shopping 59 53 47.32%
Civil services 3 1 25.00%
Entertainment areas 99 28 22.05%
Education 14 3 17.65%
Accomodation 9 0 0.00%
Financial services 5 0 0.00%
Healthcare 7 0 0.00%
Place of worship 2 0 0.00%

5.4 Predictions using crowdsourced POI labels

Following these results, we continued to repeat the analysis in Sections 4.2 and 4.3,
this time using the crowdsourced category group labels instead of those derived
from the Places API. The algorithm used and the parameters are the same as in
described in Section 4.1. As a result of limiting our dataset to notifications received
in the region of Patras, the dataset used includes 30,240 notifications (51.06% of
the original dataset as reported in Section 3.2).

As a note, before the results are reported, it should be stated that the predic-
tive algorithm trains and predicts on the data it is given. Hence, when training
and testing with Places-API derived labels, it will attempt to predict what the
Places API would return for each case. Conversely, when training and testing with
crowdsourced labels it will attempt to predict what our participants would return
for each case. Therefore to compare the classification performance directly between
these two cases is not appropriate. Instead, to obtain a better idea about the ef-
fect of the discrepancy of classifications between real users and the Places API,
we can train the algorithm using data received from the Places API, and attempt
to predict on the actual ground truth, as reported by real users. This e↵ectively
becomes equivalent to using one dataset to train an algorithm, and performing
tests on an entirely di↵erent dataset, a technique common in machine learning lit-
erature. We can expect here that the performance should drop considerably, since
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we already know that users have a di↵erent opinion on the proper classification
of a POI compared to the Places API (49.89% of labels di↵ered). Next, we report
results for all these cases, without obfuscating the coordinates.

Using the crowdsourced labels for training and testing, we achieved a macro
average F-score of 92.06% (� = 2.70%). Using the Places API-derived labels for
training and testing, the performance is slightly increased to a macro average F-
score of 95.75% (� = 2.43%). To compare the e↵ect of training and predicting
with crowdsourced labels, we performed again a k-fold cross validation (k=10),
but this time, we used the Places API-derived categories as training labels, and
attempted to predict the POI categories in each fold, examining the predicted
labels against the crowdsourced labels (i.e. the ground truth). It’s worth noting
here that the k-fold splits are stratified based on the distribution of the Places
API label, which is used for the training set. As expected, the macro average F-
score achieved dropped to 44.39% (� = 1.92%, excluding categories for which the
F-score is undefined, i.e. no correct predictions at all), representing a considerable
departure from the scores achieved using the crowdsourced labels, or the Places
API-derived labels for both training and testing. As can be seen in Fig. 14, while F-
score performance is comparable in several categories, there exist several categories
for which the performance is down to zero.

Since we noted that there exist several categories for which the mismatch
between Places API and crowdsourced labels is large (Table 7), we attempted the
same predictive process, this time removing the cases belonging to the categories
with large discrepancies from the dataset (Miscellaneous, Outdoor areas, Personal
care, Professional services, Shopping). The rationale here is that these mis-aligned
labels could be overly a↵ecting the result. Removing these cases (and associated
labels) maintains a level of mismatch, but at more reasonable levels. As a result,
the predictive performance increased to µ = 71.62%,� = 2.09%.

Fig. 14: F-scores per category during training and testing with crowdsourced labels
only, vs. training with Places API-derived labels and testing with crowdsourced
labels (10-fold cross validation).

Finally, we repeat the analysis using the noise addition process (Fig. 15), ob-
taining results for: a) training and testing with Places API labels only (red line);
b) training and testing with crowdsourced labels only (blue line); c) training with
Places API labels and predicting on crowdsourced labels (grey line), and; d) remov-
ing high-mismatch categories before training with Places API labels and predicting
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on crowdsourced labels (yellow line). Here, we note that adding coordinate noise
has a much less pronounced detrimental e↵ect in all cases of using training/test
label settings, compared to our original analysis. This is explainable since the com-
position and spatial distribution of POIs in this reduced dataset is di↵erent to the
original (entire) dataset.

Fig. 15: E↵ect of coordinate noise addition on F-score performance.

6 Discussion

In this paper, we examined the use of notification handling behaviour as a cue
for semantically labelling the user’s current location. We found that, when paired
with location coordinates, the resulting models can yield useful results with high
classification accuracy. Such models can be pre-trained on the cloud and then
stored and ran locally on the user’s device, as part of an application or service
framework, without the need for an internet connection. Further, we demonstrated
that such models are robust to small deviations of user coordinates from the actual
place coordinates, thereby allowing for positioning errors, or even, the obfuscation
of precise user coordinates, in order to maintain privacy.

In Study 1, reported in our original paper (Komninos et al, 2019), we assumed
that Google’s labelling of the place categories could be used as the ground truth.
As with other studies that leverage social network data, e.g. Falcone et al (2014),
the algorithms are tuned to predict the ground truth as reported by the location
identification services, therefore introducing an inherent element of inaccuracy. In
this extended paper, we addressed the issue of reliable ground truth by obtaining
semantic labels through crowdsourcing. We found that for the region of interest
we focused on, there was significant discrepancy between the labels reported by
Google, and the labels reported by city residents. As a result, we note that the
training of algorithms using labels provided by the Places API yields unacceptably
bad results, and therefore should highlight the need for better consideration of data
quality prior to use in such predictive tools and services. On the positive side,
we demonstrate that the technique we used can still provide excellent results,
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when trained on accurate data. Performance might be improved through better
hyperparameter optimisation (we kept the same for both studies) or choice of
di↵erent classification algorithms (e.g. SVM, neural networks).

Therefore, for future studies, we recommend that, where possible, relevant
labelling information should be crowdsourced from local experts, or at the very
least, cross-validated against other datasets (e.g. Facebook, Foursquare), if and
where available. In our study, we were able to obtain crowdsourced labels with
relative ease, since the scale of the covered area is not very large. Scaling this
approach to a planetary scale would be unrealistic. However, since we were able
to obtain reasonably good results by excluding the categories where high levels
of mismatch were identified, we could recommend that as a practical approach to
cover much larger geographical areas (e.g. a country), it could be enough to obtain
a small sample of labels through crowdsourcing for the whole area, and to limit
predictions for those categories only where a reasonable level of matching is found.

A further underlying assumption in our analysis is that the user is currently
positioned and has a certain non-trivial stay time at the location where the no-
tification was received. This is likely true for most cases - users spend more time
stationary at various places, than being mobile. However, further work here could
include filtering of notification events during transit times, which in our case could
not be done (since we did not keep GPS logs for privacy).

Finally, as we note di↵erent behaviours across venue categories, it would be of
value to learn the reasons leading to these variances in user behaviour. However,
this would be the subject of a further qualitative study. The generalisability of the
findings presented here is limited to the body of the participants (students), hence
the varying distribution of sample across categories. The models can be improved
by mining information from other populations, to build up the number of samples
across as many categories as possible. Personalised models depending on user type
can then also be applied to better improve classification performance.

7 Data availability

The data used in this paper are openly accessible at https://github.com/komis1/ami2019-
notifications
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