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Abstract. We analyse data from a longitudinal study of 44 participants,
including notification handling, device state and location information.
We demonstrate that it is possible to semantically label a user’s loca-
tion based on their notification handling behaviour, even when location
coordinates are obfuscated so as not to precisely match known venue lo-
cations. Privacy-preserving semantic labelling of a user’s location can be
useful for the contextually-relevant handling of interruptions and service
delivery on mobile devices.
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1 Introduction

As users of mobile devices roam through urban environments, a wealth of data
can be collected from their devices about their current whereabouts and activ-
ities. While it is relatively easy to obtain the location of a user, within a given
accuracy estimate (e.g. through GPS, connection to Wi-Fi or 4G networks), a
harder task is to assign semantics to the user’s location. The typical method
of resolving this, is by comparing the user’s coordinates against a database of
known locations, and there are several commercial services that offer this type
of information (e.g. Google Places API). Therefore, given a user’s location coor-
dinates, it is relatively easy to obtain the venue that a user might currently be
at, and therefore to infer their current activity (e.g., they are at Cinema X, and
thus quite likely watching a movie). This knowledge is valuable for the purpose of
offering contextually relevant notification handling to users. Currently, users are
left on their own in terms of how they might manage notifications under different
contexts [3]. However, automatic notification management can offer opportuni-
ties for a better and more socially aware mobile use experience [2]. Taking the
cinema example, a device could automatically suppress incoming notifications
which are not relevant at the current location (e.g. [11]) or automatically set the
device ringer mode to silent for the duration of the user’s stay at that location.

There are several confounding factors to being able to achieve this goal. First,
user location coordinates might not be available, or accurate enough to provide
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a reasonable estimate of venue (e.g. the user might be indoors, or the user might
be connected to a sparse 4G network only). Further, the user might be mobile
and therefore rapidly moving across venues, hence a continuous lookup of the
user’s location is required, expending device power and network bandwidth. Even
more, for services such as this to work, the user’s location needs to be sent to a
remote server, potentially compromising user privacy.

As discussed in existing literature, users receive a significant volume of noti-
fications during the day, from on-device events (e.g. network availability, battery
status) and external services (e.g. instant messaging), which can reach several
hundreds ([12],). These events can become opportune moments for assessing the
user’s location. The user behaviour in handling these notification events can
vary significantly across time (e.g. [8]), and we can assume that the behavioural
choices are influenced by the location context and semantics as well, even though
there is no previous literature to investigate this. For example, while watching
a movie at the cinema, the user might take longer to notice an incoming notifi-
cation since their device will probably be set to ”silent mode” and tucked away,
or even if they do, they might chose to ignore it until the show is over.

In this paper, we explore the use of notification handling behaviour and de-
vice state information, as an additional source of information for overcoming
problems with user coordinate availability and accuracy. Using supervised ma-
chine learning algorithms on a dataset of notification and location samples from
several users, we predict user location semantics and demonstrate that notifica-
tion handling behaviour can overcome the problem of location accuracy.

2 Related work

Discovering location semantics is the research effort directed towards assigning
categorical labels (e.g. ”Home”, ”School”, ”Shop”) to venues represented in a
dataset with at least a set of coordinates (latitude, longitude) and optionally a
given name (e.g. ”Mike’s cafe”). Location semantics are important for a range of
location based services, such as point-of-interest (POI) search and recommenda-
tion. Commercial applications such as Google Maps, Foursquare and Tripadvisor
maintain large databases of POIs, relying largely on users adding and/or mod-
ifying these. One issue with this approach is that represented venues are not
always correctly semantically labelled by the users, and also the reliance on user
effort means that many real-world POIs may be often left out of the service.
Previous research has frequently focused on the automatic semantic labelling of
locations, with a variety of means. For example, in [6], check-ins from social net-
works (Twitter) were used to identify users’ home locations, with good accuracy.
In [9], data from location diary studies was used to build a model to automati-
cally infer user home and office locations, using GPS traces as an input, resulting
in reasonable performance for both categories (100% and 66%). In [5], check-in
data (e.g. number of visitors, diurnal distribution, stay time etc.) was again used
to predict venue labels across 8 categories, however with mixed results across the
different categories (F-score betwen 54% - 92%). In [7], a spatiotemporal topic
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model was used to leverage location ”tags” left by users, in order to determine
the location category, with an average accuracy ≈ 60%.

Other studies have leveraged sensor data in addition to other contextual
information for semantic place labelling. In [15], GPS, accelerometer, Bluetooth
and Wi-Fi data were used amongst others to achieve an accuracy≈ 75% across 10
different location categories. Similar results are obtained in [13], where labelled
and unlabelled data are used to implement a semi-supervised learning approach
to predict across 9 categories. In [4], 11 categories are predicted from, using
features related to stay time, device battery, applications used, user current
activity etc. Results show an accuracy of ≈ 55% with a range of classifiers.

There are some common themes in the previous literature, which can be iden-
tified. First, where multiple classifiers have been used (e.g. decision trees, SVMs,
random forests), the results do not seem to vary significantly. Most often, it is
the type and number of features introduced to the model which have the most
impact. Secondly, a larger number of categories makes the likelihood of misclas-
sifications higher. Both in [4] and in other work such as [10], it is demonstrated
that a less fine-grained categorisation approach improves results significantly
(e.g from ≈ 65% with 10 categories, to ≈ 89% when these are collapsed into 3).
Another issue is that, as demonstrated in most papers (e.g. [4]), there is a signif-
icant class imbalance in the datasets used. This is somewhat problematic since
in all reviewed works apart from [5], the measure of accuracy is used, which is
heavily influenced by the prevalence of certain categories [1]. Hence, comparisons
with the performance of these previous approaches is done with some hesitation.

To the best of our knowledge, the use of notification handling behaviour as a
feature for semantic place labelling has not been investigated in the past. Hence
the goal of our paper is to explore how this information can be used for the task
of semantic place labelling.

3 Study methodology

3.1 Apparatus and participants

We developed a UI-less notification logging application for Android devices,
which runs unobtrusively on the device as a background service. Using the An-
droid NotificationListener service, which allows the capture of issued notification
details, as well as various other Android APIs (e.g. PowerManager, DisplayMan-
ager), we collected features about the notifications and the user’s device state
at the time of issue. We also exploited the Google Places API to retrieve details
about the user’s presumed location at the time of notification issue. This API
requests the user’s location coordinates, and returns a list of likely places where
the user is located, along with a confidence level. We logged the place which had
the highest confidence value. The data features collected are discussed in detail
in section 3.3. All data was uploaded to a remote server at frequent intervals
during the day, provided the user had wi-fi connectivity.

A call for participation was issued to undergraduate students at our local uni-
versity. The application was installed on their device, a consent form was signed
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and participants were instructed that they could quit the study at any time. The
study automatically ended after 3 months of use. They were requested to leave
location services enabled on their device for the duration of the study, although
we did not enforce this condition. In total, 44 participants took part in the study
(26 female). From this set of participants, we excluded several participants who
participated for fewer than 10 days and who provided fewer than 50 notification
log entries, resulting in a subset of 31 participants. Participants provided data
that spanned an average of 30.87 days (sd=16.15, min=13, max=84).

3.2 Dataset preparation

In total we collected 204,074 notifications from the users. In the dataset, we
noticed that a significant number of notifications (38,400) were issued by the
system and immediately dismissed. This phenomenon was observed for all users,
although for some users the proportion of such notifications was unusually large.
We are not certain why this happens. Further investigation of the package name
showed that some system applications might be issuing such notifications (per-
haps as a means of interprocess communication), although it might be the case
that a user is also manually quickly dismissing some notifications (within the res-
olution of 1 second). We decided to exclude such notifications from the dataset.
Further, we removed from the dataset all notifications for which the “flag” fea-
ture values indicated that they were ongoing events and not user-dismissable
(e.g. an ongoing phonecall or download). These notifications are automatically
dismissed by the system and hence offer no value to our research goal. From
the remaining notifications, a significant number did not contain location infor-
mation, since the user’s location services might have been switched off at the
time, or the service might not have been available. We also excluded these from
the dataset. After these exclusions, the dataset contained 59,221 user-dismissed
notifications with location details.

(a) Entire dataset (b) Response time < 3h

Fig. 1: Distribution of response time to notifications (100 bins)

Examining the pruned dataset, we observed that the average response time
to notifications is 1,366.93s (sd=11,255.82), with a maximum response time of



Pred. User Loc. using Mobile Notif. Behaviour 5

562,302s. A histogram of response time to notifications shows a power-law dis-
tribution (Fig. 1). Based on this observation, we limited the dataset to only
notifications that were attended to within 3 hours of issue, resulting in 57,737
notifications (97.5% of the original dataset). As can be seen, even after culling
the dataset further, the distribution of response times to notifications maintains
a power-law shape. This finding is consistent with previous works such as [8].

3.3 Dataset features

To address the problem at hand, we used raw and synthetic features obtained
from the user’s device. To begin, the raw data features collected from users are
shown in Table 1.

From these raw features we synthesized a further set of features, to create
the final dataset to be used for prediction, as shown in Table 2. Notably, we used
the current device ringer mode and programmed notification modalities (custom
or default) to determine the true modalities used to deliver the notification, as
per [8]. Further, a place can belong to multiple categories. These are reported in
a non-ordered list by Google, ostensibly therefore the order of appearance shows
the prevalence of a category type (e.g. ”Bar, Restaurant, Cafe” shows that a
place is primarily of type ”Bar”, but also functions as a restaurant and cafe).
We therefore extract the primary category of a venue. In doing so, we observed
that many places included the vague category ”Point of Interest”. Hence, where
this was the primary category, it was replaced by the immediately subsequent
category type.

Another note here relates to Google’s list of categories, where 127 different
categories are listed. Predicting on 127 category classes is possible, but presents
an unnecessary complexity to the problem, as many venue categories are quite
similar in nature and it can be expected that a user will exhibit similar be-
havioural patterns in these. For example, ”Church” and ”Mosque” are both
places of worship, where devices are typically kept on silent, and users do not
readily engage in notification handling. We therefore attempted to group the
individual categories into larger sets, as per Table 3. Ultimately, we assigned to
each place the super-category to which it belongs, based on its primary category
type. An exception to this were the ”Miscellaneous” and ”Entertainment areas”
categories, since for these the user behaviour might be quite different depending
on conditions (e.g. a user probably can’t notice a notification in a night club as
easily as in a cafe), hence for these we used the primary categories ungrouped.
As a result, we find that the user notifications were issued at 24 distinct place
categories and distributed unevenly (Table 3, non-grouped primary categories
capitalised). Finally, it’s important to note that the location coordinates col-
lected by our app, are not the user’s actual coordinates, but the coordinates
of the venue that is the user’s most likely current place, as reported back by
Google’s API. We do not store the user’s actual location coordinates for privacy
reasons.

As can be seen in Fig. 2, users receive a varying amount of notifications
throughout the day. The distribution is similar to that reported in previous
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Table 1: Raw data features collected
Notification Details

Time posted Unix timestamp of notification issue
Time dismissed Unix timestamp of notification dismissal
Package name Application that created the notification
Sound Whether the notification was programmed to issue a

custom sound alert
LED Whether the notification was programmed to issue a

custom LED blink pattern
Vibration Whether the notification was programmed to issue a

custom vibration pattern
DefaultSound Whether the notification was programmed to use the

default sound alert
DefaultLED Whether the notification was programmed to use the

default LED blink pattern
DefaultVibration Whether the notification was programmed to use the

default vibration pattern
Priority The notification priority category
Notification flags Additional information about the notification

Device state

Ringer mode The current device ringer mode (silent, vibrate only,
full)

Idle state Whether the device is in an idle state
Interactive state Whether the device is in a state ready to interact

with the user (screen on, processor awake)
Lockscreen notifications allowed Whether notifications are visible from the user’s lock

screen

Location Details

Place name Name of the most likely current place
Place categories The categories assigned to the most likely current

place
Confidence Confidence of reporting the most likely current place
Latitude Decimal coordinates of the most likely current place
Longitude Decimal coordinates of the most likely current place
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Table 2: Final feature set
Notification Details

Response time Time dismissed - time posted Synthetic
Hour issued Hour of day at notification issue [0-23] Synthetic
Day of week issued Day of week at notification issue [1-7] Synthetic
Had Sound Whether the notification was issued with a sound Synthetic
Had LED Whether the notification was issued with a LED

blinking pattern
Synthetic

Had Vibration Whether the notification was issued with a vibration
pattern

Synthetic

Priority The notification priority category Raw

Device state

Idle state Whether the device is in an idle state Raw
Interactive state Whether the device is in a state ready to interact with

the user (screen on, processor awake)
Raw

Lockscreen notifica-
tions allowed

Whether notifications are visible from the user’s lock
screen

Raw

Location Details

Place category The primary place category Synthetic
Latitude Decimal coordinates of the most likely current place Raw
Longitude Decimal coordinates of the most likely current place Raw

literature, such as [4]. More importantly, we note that the diurnal distribution
varies pronouncedly for only a few categories, whereas for other categories, it
remains rather consistent. This is an expected result, since different venue types
exhibit different diurnal visitation patterns [5]. Further, we note the distribution
of response times to various notifications on a hourly basis (Fig. 3a). The pattern
is similar to the findings in [8], showing the distinct user behaviour in handling
notifications throughout the day. Distinct response time averages are also noted
across the categories (Fig. 3b), demonstrating that attentiveness to the device
is likely related to device ringer mode and current user activity (Fig. 4).

(a) All notifications (b) Per place category

Fig. 2: Diurnal distribution of notifications
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Table 3: Grouped place categories
Category group Categories Samples

Accomodation Campground, Lodging, Room, Rv Park 1,350

Address Administrative Area Level 1, Administrative Area
Level 2, Administrative Area Level 3, Country,
Geocode, Locality, Political, Post Box, Postal Code,
Postal Code Prefix, Postal Town, Street Address,
Sublocality, Sublocality Level 1, Sublocality Level 2,
Sublocality Level 3, Sublocality Level 4, Sublocality
Level 5, Synthetic Geocode

86

Civil Services City Hall, Courthouse, Embassy, Fire Station, Local
Government Office, Police, Post Office

89

Contractors Electrician, General Contractor, Moving Company,
Painter, Plumber, Roofing Contractor

76

Education Library, School, University 11,996

Entertainment Areas Amusement Park, Aquarium, Bar, Bowling Alley,
Cafe, Casino, Gym, Movie Theater, Museum, Night
Club, Restaurant, Stadium, Zoo

11,157

Financial Services Bank, Atm, Finance 93

Healthcare Dentist, Doctor, Health, Hospital, Physiotherapist 617

Miscellaneous Establishment, Floor, Other, Point Of Interest,
Premise, Subpremise

18,347

Outdoor Areas Colloquial Area, Natural Feature, Neighborhood,
Park, Parking, Route

516

Personal Care Beauty Salon, Hair Care, Spa 1,104

Place Of Worship Cemetery, Church, Hindu Temple, Mosque, Place Of
Worship, Synagogue

758

Professional Services Lawyer, Accounting, Car Dealer, Car Rental, Car Re-
pair, Car Wash, Funeral Home, Insurance Agency,
Laundry, Locksmith, Real Estate Agency, Storage,
Travel Agency, Veterinary Care

659

Public Transport Airport, Bus Station, Intersection, Subway Station,
Taxi Stand, Train Station, Transit Station

580

Shopping Art Gallery, Bakery, Bicycle Store, Book Store, Cloth-
ing Store, Convenience Store, Department Store, Elec-
tronics Store, Florist, Food, Furniture Store, Gas Sta-
tion, Grocery Or Supermarket, Hardware Store, Home
Goods Store, Jewelry Store, Liquor Store, Meal Deliv-
ery, Meal Takeaway, Movie Rental, Pet Store, Phar-
macy, Shoe Store, Shopping Mall, Store

10,309
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(a) Diurnal, all notifications (b) Per place category

Fig. 3: Distribution of response time to notifications

Fig. 4: Average response time per category and device ringer mode (0=silent,
1=vibrate only, 2=all modalities)

4 Predicting user location types

4.1 Algorithms and parameter selection

For our analysis, we used decision trees to perform multinomial classification
on the prediction target (place type), since they have been shown to demon-
strate comparable performance to other methods [5]. To obtain an estimate of
good parameters to use, we employed an evolutionary algorithm search process
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on a small hold-out dataset. The final parameters used for the algorithm are
Maximal depth:23, Minimal gain:0.013, Minimal leaf size:2, Minimal split size:4.
Throughout the analysis reported in the following sections, we used a 10-fold
cross-validation approach. As per other studies, we note that there is an imbal-
ance in the frequency of location categories (Fig. ??), hence for performance we
adopt the F1-score (macro-averaged), which is more appropriate for imbalanced
datasets, compared to the accuracy measure usually encountered in previous
literature.

4.2 Decision tree modelling performance

As a starting point, we apply the decision tree classification algorithm to the
entire dataset. To clarify the process further, the classification algorithm is fed
with all features as shown in Table 2, and returns the predicted place category.
We assume the user’s location is the same as each venue’s reported coordinates.
Therefore, given the user’s notification handling behaviour, their location, and
the device state, we attempt to predict the type of venue that they are currently
at. As seen in Fig. 5, the classification performance is quite good for most cate-
gories (F-score macro µ. 82.9%, σ=12.6%). During analysis, we noted that there
is some discrepancy in the confidence reported for the most likely current user
place, across the place categories (Fig. 6). For this reason, we decided to repeat
the analysis in multiple steps, each time limiting the dataset to contain only no-
tifications reported where the most likely current user place was reported above
a certain confidence threshold T ∈ [0, 0.1, ..0.9]. The results are shown in Fig.
7. We note that the average F-score is not majorly affected by the reduction of
the dataset, however the best nominal performance is achieved when consider-
ing venues reported with a confidence threshold T ≥ 0.7 (µ=84.6%, σ=13.51%,
dataset size = 13,558 entries).

4.3 Modelling with inaccurate user coordinates

In the preceding analysis, we assumed that a user’s current coordinates are the
same as those corresponding to places reported by Google’s API. Of course, it
would be rare that the user’s actual coordinates would be precisely the same
as those that match a specific venue, especially for venues that cover a large
area (e.g. outdoor parks). To overcome this limitation, we proceeded to modify
the user’s coordinates by adding random noise to the known place coordinates
(latitude and longitude). This noise was applied to each coordinate component
individually, following a Gaussian distribution with a standard deviation set by
us. The noise standard deviation was calculated using the formula n× 10−x and
was applied to each coordinate component (latitude and longitude), therefore
the resulting random coordinates would fall within a certain circular range of
a specific venue. An example of how this process generates the random user
coordinates within a gaussian distance distribution of a specific venue is shown
in Table 4. Distance is calculated using the Haversine formula.
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Fig. 5: Average F-score using decision trees, all notifications

Fig. 6: Average confidence of most likely user place, all notifications, error bars
at 95%c.i.

Table 4: Sample random coordinate range generation
Noise σ Lat Lng Dist. at 1σ (m)

0 (Place coords.) 38.2836678 21.7889705 0
1.0 × 10−6 38.28370608 21.78899229 4.7
2.0 × 10−6 38.28374437 21.78901408 9.3
3.0 × 10−6 38.28378265 21.78903587 14.0
4.0 × 10−6 38.28382093 21.78905766 18.6
5.0 × 10−6 38.28385922 21.78907944 23.3
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Fig. 7: Average F-score using decision trees (error bars at 95%c.i.)

To assess the effect of imprecise user coordinates, we repeated the analysis for
each value of n ∈ [1, 2, .., 9], limiting the dataset to locations with a confidence
threshold T ≥ 0.7, since this achieved the best nominal performance in the
preceding analysis. As can be seen in Fig. 8a, the algorithm remains quite robust
when adding noise to the decimal coordinates with a σ ≤ 9 × 10−6 (≈42m),
after which, performance begins to deteriorate significantly. We performed also
the process for a few larger distances (Fig. 8b). As expected, the performance
degradation continues.

At this point, it becomes interesting to observe which categories suffer the
heaviest penalty then the user coordinates are further away from the actual
place coordinates. Taking the largest noise σ distance (233.1m), we note that
the categories Place of worship, Outdoor areas, Professional services, Stadium
and Civil services take the worst hit between -35.46% and -55.45% reduction
of their F-score, compared to the smallest σ (4.7m). On the other hand, some
categories like Shopping and Cafe only take a small penalty (-7.56% and -7.20%)
respectively. The explanation for this is possibly rests in the spatial clustering
of these venue types (e.g. see Fig. 9). In Fig. 9, we see that cafes are mostly
clustered together, hence we may not be able to accurately guess exactly which
cafe a user is at, but we can be quite certain that they might be at some cafe,
as long as their location and notification response behaviour is proximal to that
captured at a nearby cafes. Although this might suggest that spatial distribution
may have a significant effect on the accuracy of the classifier, it must be borne in
mind that this is a very extreme scenario. Most users’ location data is obtained
via A-GPS, which, in an urban environment, has been shown to have an accuracy
of about 9m [14].
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(a) 4.7m ≤ σ ≤ 69.9m (b) 93.2m ≤ σ ≤ 233.1m

Fig. 8: Average F-score using decision trees, under random coordinate input noise

(a) Cafe category (b) Places of worship category

Fig. 9: Spatial distribution of places in our dataset
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4.4 Effect of user location coordinates

In the preceding analysis, one of the input features is the user’s location. This
feature is certainly obtainable from the user, but its availability depends on
whether a user has enabled positioning on their device, their surroundings (in-
doors or outdoors) and connectivity (wi-fi, 4G, off). So far we have demonstrated
that guessing the user’s current location type is possible based on their notifi-
cation behaviour, device state and geographic location, even if the latter is not
precisely correspondent to a known place. For the next step, we wanted to exper-
iment without taking user position coordinates into account. The same process
as in the previous analysis was repeated, limiting the dataset iteratively to con-
tain notifications at locations above a confidence threshold T . As shown in Fig.
10 the results are much worse than in our previous analysis, showing that the
prediction model depends heavily on the knowledge of the user’s coordinates,
even though these do not necessarily need to correspond with great precision to
the true location’s coordinates.

Fig. 10: Average F-score using decision trees (error bars at 95%c.i.)

4.5 Discussion

In this paper, we examined the use of notification handling behaviour as a cue for
semantically labelling the user’s current location. We found that, when paired
with location coordinates, the resulting models can yield useful results with
high classification accuracy. Such models can be pre-trained on the cloud and
then stored and ran locally on the user’s device, as part of an application or
service framework, without the need for an internet connection. Further, we
demonstrated that such models are robust to small deviations of user coordinates
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from the actual place coordinates, thereby allowing for positioning errors, or
even, the obfuscation of precise user coordinates, in order to maintain privacy.

An underlying assumption in our analysis is that the user is currently posi-
tioned and has a certain non-trivial stay time at the location where the notifi-
cation was received. This is likely true for most cases - users spend more time
stationary at various places, than being mobile. However, further work here
could include filtering of notification events during transit times, which in our
case could not be done (since we did not keep GPS logs for privacy).

For all preceding analyses, there is another underlying assumption, which
is that Google’s labelling of the place categories has been used as the ground
truth. However, this is not necessarily true. Since many of these places are added
by users (and ostensibly curated by a few moderators), the assignment of place
categories is not necessarily precise. While for some venue categories this issue
might be less pronounced, categories such as ”Establishment” are quite vague
and therefore likely to contain many inaccuracies. As an example, our dataset
contains 513 distinct places of type ”Establishment”. A manual search of this
list reveals that 33 of these venues would be better classified under the type
”Education” (e.g. ”Department of Civil Engineering”). Therefore, it must be
noted that as with other studies that leverage social network data (e.g. [5]) the
algorithms are tuned to predict the ground truth as reported by the location
identification services, therefore introducing an inherent element of inaccuracy.
In future work, it would be interesting to examine the failings of these classifi-
cation algorithms, although this would require a significant investment of time
and effort to obtain a reliable ground truth. However, where such algorithms fail,
there might be an opportunity to exploit these failures in order to flag venues
with incorrect labelling, helping thus to better curate such location datasets.

Finally, as we note different behaviours across venue categories, it would be of
value to learn the reasons leading to these variances in user behaviour. However,
this would be the subject of a further qualitative study. The generalisability
of the findings presented here is limited to the body of the participants (stu-
dents), hence the varying distribution of sample across categories. The models
can be improved by mining information from other populations, to build up the
number of samples across as many categories as possible. Personalised models
depending on user type can then also be applied to better improve classification
performance.
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